Financial Toolbox
 For Use with MATLAB ${ }^{\circledR}$

Computation

Visualization

Programming

User's Guide
Version 2

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Financial Toolbox User's Guide

© COPYRIGHT 1995-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: October $1995 \quad$ First printing
January 1998
Second printingRevised for 1.1
January 1999 Third printing Revised for 2.0 (Release 11)
November 2000 Fourth printing Revised for 2.1.2 (Release 12)
May $2003 \quad$ Online only Revised for 2.3 (Release 13)
June $2004 \quad$ Online only Revised for 2.4 (Release 14)
August 2004 Online only Revised for 2.4.1 (Release 14+)

Getting Started

What Is the Financial Toolbox? 1-2
Using Matrix Functions for Finance 1-4
Key Definitions 1-4
Referencing Matrix Elements 1-4
Transposing Matrices 1-6
Matrix Algebra Refresher 1-7
Adding and Subtracting Matrices 1-7
Multiplying Matrices 1-8
Dividing Matrices 1-13
Solving Simultaneous Linear Equations 1-13
Operating Element-by-Element 1-16
Function Input/Output Arguments 1-18
Input Arguments 1-18
Function Output Arguments 1-20
Interest Rate Arguments 1-21
Tutorial
2
Handling and Converting Dates 2-4
Date Formats 2-4
Date Conversions 2-5
Current Date and Time 2-8
Determining Dates 2-9
Formatting Currency 2-12
Charting Financial Data 2-13
High-Low-Close Chart Example 2-13
Bollinger Chart Example 2-14
Analyzing and Computing Cash Flows 2-16
Interest Rates/Rates of Return 2-16
Present or Future Values 2-17
Depreciation 2-18
Annuities 2-18
Pricing and Computing Yields for Fixed-Income Securities 2-20
Terminology 2-20
SIA Framework 2-23
SIA Default Parameter Values 2-24
SIA Coupon Date Calculations 2-27
SIA Semiannual Yield Conventions 2-27
Pricing Functions 2-28
Yield Functions 2-28
Fixed-Income Sensitivities 2-29
Term Structure of Interest Rates 2-30
Pricing and Analyzing Equity Derivatives 2-33
Sensitivity Measures 2-33
Analysis Models 2-34
Portfolio Analysis
3
Analyzing Portfolios 3-2
Portfolio Optimization Functions 3-3
Portfolio Construction Examples 3-5
Efficient Frontier Example 3-5
Portfolio Selection and Risk Aversion 3-8
Optimal Risky Portfolio Example 3-9
Constraint Specification 3-12
Linear Constraint Equations 3-14
Specifying Additional Constraints 3-17
Active Returns and Tracking Error Efficient Frontier 3-20
Solving Sample Problems
4
Common Problems in Finance 4-3
Sensitivity of Bond Prices to Changes in Interest Rates 4-3
Constructing a Bond Portfolio to Hedge Against Duration and Convexity 4-6
Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve 4-8
Constructing Greek-Neutral Portfolios of European Stock Options 4-12
Term Structure Analysis and Interest Rate Swap Pricing 4-15
Producing Graphics with the Toolbox 4-19
Plotting an Efficient Frontier 4-19
Plotting Sensitivities of an Option 4-21
Plotting Sensitivities of a Portfolio of Options 4-23
Function Reference
5
Functions - Categorical List 5-2
Handling and Converting Dates 5-2
Formatting Currency 5-5
Charting Financial Data 5-5
Analyzing and Computing Cash Flows 5-6
Fixed-Income Securities 5-8
Analyzing Portfolios 5-9
Pricing and Analyzing Derivatives 5-10
GARCH Processes 5-11
Obsolete Bond Price and Yield Functions 5-11
Obsolete BDT Functions 5-12
Functions - Alphabetical List 5-13
Bibliography
A
Bond Pricing and Yields A-2
Term Structure of Interest Rates A-2
Derivatives Pricing and Yields A-2
Portfolio Analysis A-3
Other References A-3
Glossary
Index

Getting Started

What Is the Financial Toolbox? (p. 1-2) Overview of the product.
Using Matrix Functions for Finance Elementary information about matrices.
(p. 1-4)
Matrix Algebra Refresher (p. 1-7) Matrix algebra you learned in school but may have forgotten.
Function Input/Output Arguments Inputs and outputs for toolbox functions.

What Is the Financial Toolbox?

MATLAB ${ }^{\circledR}$ and the Financial Toolbox provide a complete integrated computing environment for financial analysis and engineering. The toolbox has everything you need to perform mathematical and statistical analysis of financial data and display the results with presentation-quality graphics. You can quickly ask, visualize, and answer complicated questions.

In traditional or spreadsheet programming you must deal with all sorts of housekeeping details: declaring, data typing, sizing, etc. MATLAB does all that for you. You just write expressions the way you think of problems. There is no need to switch tools, convert files, or rewrite applications.
With MATLAB and the Financial Toolbox, you can:

- Compute and analyze prices, yields, and sensitivities for derivatives and other securities, and for portfolios of securities.
- Perform Securities Industry Association (SIA) compatible fixed-income pricing, yield, and sensitivity analysis.
- Analyze or manage portfolios.
- Design and evaluate hedging strategies.
- Identify, measure, and control risk.
- Analyze and compute cash flows, including rates of return and depreciation streams.
- Analyze and predict economic activity.
- Create structured financial instruments, including foreign-exchange instruments.
- Teach or conduct academic research.

This chapter uses MATLAB to review the fundamentals of matrix algebra you need for financial analysis and engineering applications. It contains these sections:

- "Using Matrix Functions for Finance" on page 1-4

Reviews Key Definitions and some matrix algebra fundamentals, such as Referencing Matrix Elements and Transposing Matrices.

- "Matrix Algebra Refresher" on page 1-7

Provides a brief refresher on using matrix functions in financial analysis and engineering

- "Function Input/Output Arguments" on page 1-18

Describes acceptable formats for providing data to MATLAB and the resulting output from computations on the supplied data.

This material explains some MATLAB concepts and operations using financial examples to help get you started.

Using Matrix Functions for Finance

Many financial analysis procedures involve sets of numbers; for example, a portfolio of securities at various prices and yields. Matrices, matrix functions, and matrix algebra are the most efficient ways to analyze sets of numbers and their relationships. Spreadsheets focus on individual cells and the relationships between cells. While you can think of a set of spreadsheet cells (a range of rows and columns) as a matrix, a matrix-oriented tool like MATLAB manipulates sets of numbers more quickly, easily, and naturally.

Key Definitions

Matrix. A rectangular array of numeric or algebraic quantities subject to mathematical operations; the regular formation of elements into rows and columns. Described as an "m-by-n" matrix, with m the number of rows and n the number of columns. The description is always "row-by-column." For example, here is a 2-by-3 matrix of two bonds (the rows) with different par values, coupon rates, and coupon payment frequencies per year (the columns) entered using MATLAB notation.

$$
\text { Bonds }=\left[\begin{array}{rll}
1000 & 0.06 & 2 \\
500 & 0.055 & 4
\end{array}\right]
$$

Vector. A matrix with only one row or column. Described as a "1-by-n" or "m-by-1" matrix. The description is always "row-by-column." Here is a 1-by-4 vector of cash flows in MATLAB notation.

```
Cash = [1500 4470 5280 -1299]
```

Scalar. A 1-by-1 matrix; i.e., a single number.

Referencing Matrix Elements

To reference specific matrix elements use (row, column) notation. For example,

```
Bonds(1,2)
```

ans =
0.06

```
Cash(3)
ans =
```

5280.00

You can enlarge matrices using small matrices or vectors as elements. For example,

```
AddBond = [1000 0.065 2];
```

Bonds = [Bonds; AddBond]
adds another row to the matrix and creates
Bonds =

1000	0.06	2
500	0.055	4
1000	0.065	2

Likewise,

```
Prices = [987.50
```

 475.00
 995.00]
 Bonds = [Prices, Bonds]
adds another column and creates

```
Bonds =
```

987.50	1000	0.06	2
475.00	500	0.055	4
995.00	1000	0.065	2

Finally, the colon (:) is important in generating and referencing matrix elements. For example, to reference the par value, coupon rate, and coupon frequency of the second bond.

```
BondItems = Bonds(2, 2:4)
BondItems =
    500.00 0.055 4
```


Transposing Matrices

Sometimes matrices are in the wrong configuration for an operation. In MATLAB, the apostrophe or prime character (') transposes a matrix: columns become rows, rows become columns. For example,

$$
\text { Cash }=\left[\begin{array}{llll}
1500 & 4470 & 5280 & -1299
\end{array}\right]
$$

produces
Cash =
1500
4470
5280
-1299

Matrix Algebra Refresher

Matrix algebra and matrix operations are fundamental to using MATLAB in financial analysis and engineering. The topics discussed in this section include:

- "Adding and Subtracting Matrices" on page 1-7
- "Multiplying Matrices" on page 1-8
- "Dividing Matrices" on page 1-13
- "Solving Simultaneous Linear Equations" on page 1-13
- "Operating Element-by-Element" on page 1-16

These explanations should help refresh your skills.
William Sharpe's Macro-Investment Analysis also provides an excellent explanation of matrix algebra operations using MATLAB. It is available on the Web at
http://www.stanford.edu/~wfsharpe/mia/mia.htm

Note When you are setting up a problem, it helps to "talk through" the units and dimensions associated with each input and output matrix. In the example under "Multiplying Matrices" below, one input matrix has "five days' closing prices for three stocks," the other input matrix has "shares of three stocks in two portfolios," and the output matrix therefore has "five days' closing values for two portfolios." It also helps to name variables using descriptive terms.

Adding and Subtracting Matrices

Matrix addition and subtraction operate element-by-element. The two input matrices must have the same dimensions. The result is a new matrix of the same dimensions where each element is the sum or difference of each corresponding input element. For example, consider combining portfolios of different quantities of the same stocks ("shares of stocks A, B, and C [the rows] in portfolios P and Q [the columns] plus shares of A, B, and C in portfolios R and S ").

$$
\begin{array}{rl}
\text { Portfolios_PQ }= & {[100} \\
500 & 200 \\
400
\end{array}
$$

```
    300 150];
Portfolios_RS = [175 125
    200 200
    100 500];
NewPortfolios = Portfolios_PQ + Portfolios_RS
NewPortfolios =
```

 \(275.00 \quad 325.00\)
 \(700.00 \quad 600.00\)
 \(400.00 \quad 650.00\)
 Adding or subtracting a scalar and a matrix is allowed and also operates element-by-element.

```
SmallerPortf = NewPortfolios-10
SmallerPortf =
    265.00 315.00
    690.00 590.00
    390.00 640.00
```


Multiplying Matrices

Matrix multiplication does not operate element-by-element. It operates according to the rules of linear algebra. In multiplying matrices, it helps to remember this key rule: the inner dimensions must be the same. That is, if the first matrix is m-by- 3 , the second must be 3 -by- n. The resulting matrix is m-by- n. It also helps to "talk through" the units of each matrix, as mentioned above.

Matrix multiplication also is not commutative; i.e., it is not independent of order. $\mathrm{A} * \mathrm{~B}$ does not equal $\mathrm{B} * \mathrm{~A}$. The dimension rule illustrates this property. If A is 1 -by- 3 and B is 3 -by- $1, \mathrm{~A} * \mathrm{~B}$ yields a scalar (1-by- 1) but $\mathrm{B} * \mathrm{~A}$ yields a 3 -by- 3 matrix.

Multiplying Vectors

Vector multiplication follows the same rules and helps illustrate the principles. For example, a stock portfolio has three different stocks and their closing prices today are

```
ClosePrices = [42.5 15 78.875]
```

The portfolio contains these numbers of shares of each stock.

```
NumShares = [100
    500
    300]
```

To find the value of the portfolio, simply multiply the vectors

```
PortfValue = ClosePrices * NumShares
```

which yields

```
PortfValue =
```

35412.50

The vectors are 1 -by- 3 and 3 -by- 1 ; the resulting vector is 1 -by- 1 , a scalar. Multiplying these vectors thus means multiplying each closing price by its respective number of shares and summing the result.

To illustrate order dependence, switch the order of the vectors

```
Values = NumShares * ClosePrices
Values =
\begin{tabular}{rrr}
4250.00 & 1500.00 & 7887.50 \\
21250.00 & 7500.00 & 39437.50 \\
12750.00 & 4500.00 & 23662.50
\end{tabular}
```

which shows the closing values of 100,500 , and 300 shares of each stock - not the portfolio value, and meaningless for this example.

Computing Dot Products of Vectors

In matrix algebra, if X and Y are vectors of the same length

$$
\begin{aligned}
& Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right] \\
& X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{aligned}
$$

then the dot product

$$
X \bullet Y=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

is the scalar product of the two vectors. It is an exception to the commutative rule. To compute the dot product in MATLAB, use sum (X .* Y) or sum (Y .* X). Just be sure the two vectors have the same dimensions. To illustrate, use the previous vectors.

```
Value = sum(NumShares .* ClosePrices')
Value =
```

35412.50

```
Value = sum(ClosePrices .* NumShares')
```

Value =
35412.50

As expected, the value in these cases is exactly the same as the PortfValue computed previously.

Multiplying Vectors and Matrices

Multiplying vectors and matrices follows the matrix multiplication rules and process. For example, a portfolio matrix contains closing prices for a week. A second matrix (vector) contains the stock quantities in the portfolio.

WeekClosePr $=$	$[42.5$	15	78.875
	42.125	15.5	78.75
	42.125	15.125	79
	42.625	15.25	78.875
	43	15.25	$78.625] ;$

```
PortQuan = [100
    500
    300];
```

To see the closing portfolio value for each day, simply multiply

```
WeekPortValue = WeekClosePr * PortQuan
WeekPortValue =
```

 35412.50
 35587.50
 35475.00
 35550.00
 35512.50
 The prices matrix is 5 -by- 3 , the quantity matrix (vector) is 3 -by- 1 , so the resulting matrix (vector) is 5 -by- 1 .

Multiplying Two Matrices

Matrix multiplication also follows the rules of matrix algebra. In matrix algebra notation, if A is an m-by- n matrix and B is an n-by- p matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], B=\left[\begin{array}{ccccc}
b_{11} & \ldots & b_{1 j} & \ldots & b_{1 p} \\
b_{21} & \ldots & b_{2 j} & \ldots & b_{2 p} \\
\vdots & & \vdots & & \vdots \\
b_{n 1} & & b_{n j} & & b_{n p}
\end{array}\right]
$$

then $C=A * B$ is an m-by- p matrix; and the element $c_{i j}$ in the i th row and j th column of C is

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}
$$

To illustrate, assume there are two portfolios of the same three stocks above but with different quantities.

```
Portfolios = [100 200
    500 400
    300 150];
```

Multiplying the 5-by-3 week's closing prices matrix by the 3-by-2 portfolios matrix yields a 5-by-2 matrix showing each day's closing value for both portfolios.

```
PortfolioValues = WeekClosePr * Portfolios
PortfolioValues =
```

35412.50	26331.25
35587.50	26437.50
35475.00	26325.00
35550.00	26456.25
35512.50	26493.75

Monday's values result from multiplying each Monday closing price by its respective number of shares and summing the result for the first portfolio, then doing the same for the second portfolio. Tuesday's values result from multiplying each Tuesday closing price by its respective number of shares and summing the result for the first portfolio, then doing the same for the second portfolio. And so on through the rest of the week. With one simple command, MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar is an exception to the dimension and commutative rules. It just operates element-by-element.

```
Portfolios = [100 200
    500 400
    300 150];
DoublePort = Portfolios * 2
DoublePort =
    200.00 400.00
    1000.00 800.00
    600.00 300.00
```


Dividing Matrices

Matrix division is useful primarily for solving equations, and especially for solving simultaneous linear equations (see the next section). For example, you want to solve for X in $A * X=B$.

In ordinary algebra, you would simply divide both sides of the equation by A, and X would equal B / A. However, since matrix algebra is not commutative ($A * X \neq X * A$), different processes apply. In formal matrix algebra, the solution involves matrix inversion. MATLAB, however, simplifies the process by providing two matrix division symbols, left and right (\backslash and /). In general,
$X=A \backslash B$ solves for X in $A * X=B$
$X=B / A$ solves for X in $X * A=B$.
In general, matrix A must be a nonsingular square matrix; i.e., it must be invertible and it must have the same number of rows and columns. (Generally, a matrix is invertible if the matrix times its inverse equals the identity matrix. To understand the theory and proofs, please consult a textbook on linear algebra such as the one by Hill listed in the "Bibliography.") MATLAB gives a warning message if the matrix is singular or nearly so.

Solving Simultaneous Linear Equations

Matrix division is especially useful in solving simultaneous linear equations. Consider this problem: given two portfolios of mortgage-based instruments, each with certain yields depending on the prime rate, how do you weight the portfolios to achieve certain annual cash flows? The answer involves solving two linear equations.

A linear equation is any equation of the form

$$
a_{1} x+a_{2} y=b
$$

where a_{1}, a_{2}, and b are constants (with a_{1} and a_{2} not both zero), and x and y are variables. (It's a linear equation because it describes a line in the $x y$-plane. For example the equation $2 x+y=8$ describes a line such that if $x=2$ then $y=4$.)

A system of linear equations is a set of linear equations that we usually want to solve at the same time; i.e., simultaneously. A basic principle for exact answers in solving simultaneous linear equations requires that there be as many equations as there are unknowns. To get exact answers for x and y there
must be two equations. For example, to solve for x and y in the system of linear equations

$$
\begin{aligned}
& 2 x+y=13 \\
& x-3 y=-18
\end{aligned}
$$

there must be two equations, which there are. Matrix algebra represents this system as an equation involving three matrices: A for the left-side constants, X for the variables, and B for the right-side constants

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad B=\left[\begin{array}{c}
13 \\
-18
\end{array}\right]
$$

where $A * X=B$.
Solving the system simultaneously simply means solving for X. Using MATLAB,

$$
\begin{aligned}
& \left.A=\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right] ; \\
& B=\left[\begin{array}{c}
{[13} \\
-18
\end{array}\right] ; \\
& X=A \backslash B
\end{aligned}
$$

solves for X in $A * X=B$.

$$
x=[3
$$

7]

So $x=3$ and $y=7$ in this example. In general, you can use matrix algebra to solve any system of linear equations such as

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

by representing them as matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

and solving for X in $A * X=B$.
To illustrate, consider this situation. There are two portfolios of mortgage-based instruments, M1 and M2. They have current annual cash payments of $\$ 100$ and $\$ 70$ per unit, respectively, based on today's prime rate. If the prime rate moves down one percentage point, their payments would be $\$ 80$ and $\$ 40$. An investor holds 10 units of M1 and 20 units of M2. The investor's receipts equal cash payments times units, or $R=C$ * U , for each prime-rate scenario. As word equations,

$$
\begin{array}{ll}
\text { M1 } & \text { M2 }
\end{array}
$$

Prime flat: $\quad \$ 100 * 10$ units $+\$ 70 * 20$ units $=\$ 2400$ receipts
Prime down: $\quad \$ 80 * 10$ units $+\$ 40 * 20$ units $=\$ 1600$ receipts

As MATLAB matrices

```
Cash = [100 70
            80 40];
Units =[10
            20];
Receipts = Cash * Units
Receipts =
```

2400.00
1600.00

Now the investor asks the question: given these two portfolios and their characteristics, how many units of each should I hold to receive $\$ 7000$ if the
prime rate stays flat and $\$ 5000$ if the prime drops one percentage point? Find the answer by solving two linear equations.

$$
\text { M1 } \quad \text { M2 }
$$

Prime flat: $\quad \$ 100 * x$ units $+\$ 70 * y$ units $=\$ 7000$ receipts
Prime down: $\quad \$ 80 * x$ units $+\$ 40 * y$ units $=\$ 5000$ receipts

In other words, solve for U (units) in the equation R (receipts) $=\mathrm{C}$ (cash) * U (units). Using MATLAB left division

```
Cash = [100 70
    80 40];
Receipts = [7000
        5000];
Units = Cash \ Receipts
Units =
```

43.75
37.50

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio M2 to achieve the annual receipts desired.

Operating Element-by-Element

Finally, element-by-element arithmetic operations are called array operations. To indicate an array operation in MATLAB, precede the operator with a period (.). Addition and subtraction, and matrix multiplication and division by a scalar, are already array operations so no period is necessary. When using array operations on two matrices, the dimensions of the matrices must be the same. For example, given vectors of stock dividends and closing prices

```
Dividends = [ll.90 0.40 1.56 4.50];
Prices = [[\begin{array}{llll}{25.625 17.75 26.125 60.50];}\end{array}]
Yields = Dividends ./ Prices
Yields =
```

```
\(\begin{array}{llll}0.0741 & 0.0225 & 0.0597 & 0.0744\end{array}\)
```


Function Input/Output Arguments

MATLAB was designed to be a large-scale array (vector or matrix) processor. In addition to its linear algebra applications, the general array-based processing facility has the capability to perform repeated operations on collections of data. When MATLAB code is written to operate simultaneously on collections of data stored in arrays, the code is said to be vectorized. Vectorized code is not only clean and concise, but is also efficiently processed by the underlying MATLAB engine.

Input Arguments

Matrix Input

Because MATLAB can process vectors and matrices easily, most functions in the Financial Toolbox allow vector or matrix input arguments, rather than just single (scalar) values.

For example, the irr function computes the internal rate of return of a cash flow stream. It accepts a vector of cash flows and returns a scalar-valued internal rate of return. However, it also accepts a matrix of cash flow streams, a column in the matrix representing a different cash flow stream. In this case, irr returns a vector of internal rates of return, each entry in the vector corresponding to a column of the input matrix. Many other toolbox functions work similarly.

As an example, suppose you make an initial investment of $\$ 100$, from which you then receive by a series of annual cash receipts of $\$ 10, \$ 20, \$ 30, \$ 40$, and $\$ 50$. This cash flow stream may be stored in a vector

$$
\text { CashFlows }=\left[\begin{array}{llllll}
-100 & 10 & 20 & 30 & 40 & 50
\end{array}\right]
$$

which MATLAB displays as

```
CashFlows =
```

 - 100
 The irr function can compute the internal rate of return of this stream.

```
Rate = irr(CashFlows)
```

The internal rate of return of this investment is
Rate =
0.1201
or 12.01%.
In this case, a single cash flow stream (written as an input vector) produces a scalar output - the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

```
Rate = irr([CashFlows CashFlows CashFlows])
```

you should expect to see identical internal rates of return for each of the three investments.

Rate $=$

$$
0.1201 \quad 0.1201 \quad 0.1201
$$

This simple example illustrates the power of vectorized programming. The example shows how to collect data into a matrix and then use a toolbox function to compute answers for the entire collection. This feature can be useful in portfolio management, for example, where you might want to organize multiple assets into a single collection. Place data for each asset in a different column or row of a matrix, then pass the matrix to a Financial Toolbox function. MATLAB performs the same computation on all of the assets at once.

Matrices of String Input

Enter strings in MATLAB surrounded by single quotes ('string').
Strings are stored as character arrays, one ASCII character per element. Thus the date string

DateString = '9/16/2001'
is actually a 1-by- 9 vector. Strings making up the rows of a matrix or vector all must have the same length. To enter several date strings, therefore, use a column vector and be sure all strings are the same length. Fill in with spaces
or zeros. For example, to create a vector of dates corresponding to irregular cash flows

$$
\begin{aligned}
\text { DateFields }= & {[' 01 / 12 / 2001 '} \\
& ' 02 / 14 / 2001 ' \\
& ' 03 / 03 / 2001 ' \\
& ' 06 / 14 / 2001 ' \\
& ' 12 / 01 / 2001 '] ;
\end{aligned}
$$

DateFields actually becomes a 5 -by- 10 character array.
Don't mix numbers and strings in a matrix. If you do, MATLAB treats all entries as characters. For example,

```
Item = [\begin{array}{lll}{83}&{90}&{99}\\{'14-Sep-1999']}\end{array}]
```

becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains

```
Item =
```

SZc14-Sep-1999

Function Output Arguments

Some functions return no arguments, some return just one, and some return multiple arguments. Functions that return multiple arguments use the syntax

```
[A, B, C] = function(variables...)
```

to return arguments A, B, and C. If you omit all but one, the function returns the first argument. Thus, for this example if you use the syntax

```
X = function(variables...)
```

function returns a value for A , but not for B or C .
Some functions that return vectors accept only scalars as arguments. Why could such functions not accept vectors as arguments and return matrices, where each column in the output matrix corresponds to an entry in the input vector? The answer is that the output vectors can be variable length and thus will not fit in a matrix without some convention to indicate that the shorter columns are missing data.

Functions that require asset life as an input, and return values corresponding to different periods over that life, cannot generally handle vectors or matrices as input arguments. Those functions are

amortize	Amortization
depfixdb	Fixed declining-balance depreciation
depgendb	General declining-balance depreciation
depsoyd	Sum of years' digits depreciation

For example, suppose you have a collection of assets such as automobiles and you want to compute the depreciation schedules for them. The function depfixdb computes a stream of declining-balance depreciation values for an asset. You might want to set up a vector where each entry is the initial value of each asset. depfixdb also needs the lifetime of an asset. If you were to set up such a collection of automobiles as an input vector, and the lifetimes of those automobiles varied, the resulting depreciation streams would differ in length according to the life of each automobile, and the output column lengths would vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments

One common argument, both as input and output, is interest rate. All Financial Toolbox functions expect and return interest rates as decimal fractions. Thus an interest rate of 9.5% is indicated as 0.095 .

1 Getting Started

Tutorial

Handling and Converting Dates (p. 2-4) Date strings and serial date numbers. Date conversions. Holidays and cash-flow dates.Formatting Currency (p. 2-12)Charting Financial Data (p. 2-13)Analyzing and Computing Cash Flows(p. 2-16)
Pricing and Computing Yields forFixed-Income Securities (p. 2-20)

Pricing and Analyzing Equity Derivatives (p. 2-33)

Decimal and fractional formats. Bank format.
Useful functions for plotting financial data.
Rates of return. Present and future values. Depreciation.

Securities Industry Association (SIA) conventions. Sensitivities. Term structure.

Black-Scholes and binomial models.

The Financial Toolbox contains functions that perform many common financial tasks, including:

- Handling and converting dates

Calendar functions convert dates among different formats (including Excel formats), determine future or past dates, find dates of holidays and business days, compute time differences between dates, find coupon dates and coupon periods for coupon bonds, and compute time periods based on $360-$, 365 -, or 366-day years.

- Formatting currency

The toolbox includes functions for handling decimal values in bank (currency) formats and as fractional prices.

- Charting financial data

Charting functions produce a variety of financial charts including Bollinger bands, high-low-close charts, candlestick plots, point and figure plots, and moving-average plots. The Financial Time Series Toolbox provides additional charting functions. See the Financial Time Series Toolbox User's Guide for a description of these functions.

- Analyzing and computing cash flows

Cash-flow evaluation and financial accounting functions compute interest rates, rates of return, payments associated with loans and annuities, future and present values, depreciation, and other standard accounting calculations associated with cash-flow streams.

- Pricing and computing yields for fixed-income securities; analyzing the term structure of interest rates
Securities Industry Association (SIA) compliant fixed-income functions compute prices, yields, accrued interest, and sensitivities for securities such as bonds, zero-coupon bonds, and Treasury bills. They handle odd first and last periods in price/yield calculations, compute accrued interest and discount rates, and calculate convexity and duration. Another set of functions analyzes term structure of interest rates, including pricing bonds from yield curves and bootstrapping yield curves from market prices.
- Pricing and analyzing equity derivatives

Derivatives analysis functions compute prices, yields, and sensitivities for derivative securities. They deal with both European and American options.
Black-Scholes functions work with European options. They compute delta, gamma, lambda, rho, theta, and vega, as well as values of call and put options.
Binomial functions work with American options, computing put and call prices.

- Analyzing portfolios

Portfolio analysis functions provide basic utilities to compute variances and covariance of portfolios, find combinations to minimize variance, compute Markowitz efficient frontiers, and calculate combined rates of return.

The toolbox also contains sets of functions for modeling volatility in time series.

- Generalized Autoregressive Conditional Heteroskedasticity (GARCH) functions model the volatility of univariate economic time series. (The GARCH Toolbox provides a more comprehensive and integrated computing environment. For information see the GARCH Toolbox User's Guide or the financial products Web page at http://www.mathworks.com/products/finprod.)

Handling and Converting Dates

Since virtually all financial data is dated or derives from a time series, financial functions must have extensive date-handling capabilities. This section discusses date handling in the Financial Toolbox, specifically the topics:

- "Date Formats" on page 2-4
- "Date Conversions" on page 2-5
- "Current Date and Time" on page 2-8
- "Determining Dates" on page 2-9

Note If you specify a two-digit year, MATLAB assumes that the year lies within the 100-year period centered about the current year. See the function datenum for specific information. MATLAB internal date handling and calculations generate no ambiguous values. However, whenever possible, programmers should use serial date numbers or date strings containing four-digit years.

Date Formats

You most often work with date strings (14-Sep-1999) when dealing with dates. The Financial Toolbox works internally with serial date numbers (e.g., 730377). A serial date number represents a calendar date as the number of days that has passed since a fixed base date. In MATLAB, serial date number 1 is January 1, 0000 A.D. MATLAB also uses serial time to represent fractions of days beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So 6:00 pm on $14-$ Sep-1999, in MATLAB, is date number 730377.75.

Many toolbox functions that require dates accept either date strings or serial date numbers. If you are dealing with a few dates at the MATLAB command-line level, date strings are more convenient. If you are using toolbox functions on large numbers of dates, as in analyzing large portfolios or cash flows, performance improves if you use date numbers.

The toolbox provides functions that convert date strings to serial date numbers, and vice versa.

Date Conversions

Functions that convert between date formats are

datedisp	Displays a numeric matrix with date entries formatted as date strings
datenum	Converts a date string to a serial date number
datestr	Converts a serial date number to a date string
m2xdate	Converts MATLAB serial date number to Excel serial date number
x2mdate	Converts Excel serial date number to MATLAB serial date number

Another function, datevec, converts a date number or date string to a date vector whose elements are [Year Month Day Hour Minute Second]. Date vectors are mostly an internal format for some MATLAB functions ; you would not often use them in financial calculations.

Input Conversions

The datenum function is important for using the Financial Toolbox efficiently. datenum takes an input string in any of several formats, with 'dd-mmm-yyyy', 'mm/dd/yyyy' or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. The input string can have up to six fields formed by letters and numbers separated by any other characters:

- The day field is an integer from 1 to 31 .
- The month field is either an integer from 1 to 12 or an alphabetic string with at least three characters.
- The year field is a nonnegative integer: if only two numbers are specified, then the year is assumed to lie within the 100-year period centered about the current year; if the year is omitted, the current year is used as the default.
- The hours, minutes, and seconds fields are optional. They are integers separated by colons or followed by 'am' or 'pm'.

For example, if the current year is 1999 , then these are all equivalent

$$
\begin{aligned}
& \text { '17-May-1999' } \\
& \hline \text { '17-May-99' }
\end{aligned}
$$

```
'17-may'
'May 17, 1999'
'5/17/99'
'5/17'
```

and both of these represent the same time.

```
'17-May-1999, 18:30'
'5/17/99/6:30 pm'
```

Note that the default format for numbers-only input follows the American convention. Thus 3/6 is March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a matrix variable, then later pass the variable to a function. Alternatively, you can use datenum directly in a function input argument list.

For example, consider the function bndprice that computes the price of a bond given the yield-to-maturity. First set up variables for the yield-to-maturity, coupon rate, and the necessary dates.

```
Yield = 0.07;
CouponRate = 0.08;
Settle = datenum('17-May-2000');
Maturity = datenum('01-Oct-2000');
```

Then call the function with the variables
bndprice(Yield, CouponRate, Settle, Maturity)
Alternatively, convert date strings to serial date numbers directly in the function input argument list.

```
bndprice(0.07, 0.08, datenum('17-May-2000'),...
datenum('01-0ct-2000'))
```

bndprice is an example of a function designed to detect the presence of date strings and make the conversion automatically. For these functions date strings may be passed directly.

```
bndprice(0.07, 0.08, '17-May-2000', '01-Oct-2000')
```

The decision to represent dates as either date strings or serial date numbers is often a matter of convenience. For example, when formatting data for visual display or for debugging date-handling code, it is often much easier to view
dates as date strings because serial date numbers are difficult to interpret. Alternatively, serial date numbers are just another type of numeric data, and can be placed in a matrix along with any other numeric data for convenient manipulation.

Remember that if you create a vector of input date strings, use a column vector and be sure all strings are the same length. Fill with spaces or zeros. See "Matrices of String Input" on page 1-19.

Output Conversions

The function datestr converts a serial date number to one of 19 different date string output formats showing date, time, or both. The default output for dates is a day-month-year string, e.g., 24-Aug-2000. This function is quite useful for preparing output reports.

Format	Description
01-Mar-2000 15:45:17	day-month-year hour:minute:second
01-Mar-2000	day-month-year
03/01/00	month/day/year
Mar	month, three letters
M	month, single letter
3	month
$03 / 01$	month/day
1	day of month
Wed	day of week, three letters
W	day of week, single letter
2000	year, four numbers
99	year, two numbers
Mar01	month year

Format	Description
$15: 45: 17$	hour:minute:second
$03: 45: 17 \mathrm{PM}$	hour:minute:second AM or PM
$15: 45$	hour:minute
$03: 45$ PM	hour:minute AM or PM
Q1-99	calendar quarter-year
Q1	calendar quarter

Current Date and Time

The functions today and now return serial date numbers for the current date, and the current date and time, respectively.
today
ans $=$
730693
now
ans =
730693.48

The MATLAB function date returns a string for today's date.
date
ans $=$
26-Jul-2000

Determining Dates

The toolbox provides many functions for determining specific dates, including functions which account for holidays and other nontrading days.

For example, you schedule an accounting procedure for the last Friday of every month. The lweekdate function returns those dates for 2000; the 6 specifies Friday.

Fridates = lweekdate(6, 2000, 1:12);
Fridays = datestr(Fridates)
Fridays =
28-Jan-2000
25-Feb-2000
31-Mar-2000
28-Apr-2000
26-May-2000
30-Jun-2000
28-Jul-2000
25-Aug-2000
29-Sep-2000
27-Oct-2000
24-Nov-2000
29-Dec-2000
Or your company closes on Martin Luther King Jr. Day, which is the third Monday in January. The nweekdate function determines those dates for 2001 through 2004.

```
MLKDates = nweekdate(3, 2, 2001:2004, 1);
MLKDays = datestr(MLKDates)
MLKDays =
15-Jan-2001
21-Jan-2002
20-Jan-2003
19-Jan-2004
```

Accounting for holidays and other nontrading days is important when examining financial dates. The toolbox provides the holidays function, which contains holidays and special nontrading days for the New York Stock Exchange between 1950 and 2030, inclusive. You can edit the holidays.m file to customize it with your own holidays and nontrading days. In this example, use it to determine the standard holidays in the last half of 2000.

```
LHHDates = holidays('1-Jul-2000', '31-Dec-2000');
LHHDays = datestr(LHHDates)
LHHDays =
```

04-Jul-2000
04-Sep-2000
23-Nov-2000
25-Dec-2000

Now use the toolbox busdate function to determine the next business day after these holidays.

```
LHNextDates = busdate(LHHDates);
LHNextDays = datestr(LHNextDates)
LHNextDays =
05-Jul-2000
05-Sep-2000
24-Nov-2000
26-Dec-2000
```

The toolbox also provides the cfdates function to determine cash-flow dates for securities with periodic payments. This function accounts for the coupons per year, the day-count basis, and the end-of-month rule. For example, to determine the cash-flow dates for a security that pays four coupons per year on the last day of the month, on an actual/365 day-count basis, just enter the settlement date, the maturity date, and the parameters.

```
PayDates = cfdates('14-Mar-2000', '30-Nov-2001', 4, 3, 1);
PayDays = datestr(PayDates)
PayDays =
31-May-2000
31-Aug-2000
30-Nov-2000
28-Feb-2001
31-May-2001
31-Aug-2001
30-Nov-2001
```


Formatting Currency

The Financial Toolbox provides several functions to format currency and chart financial data. The currency formatting functions are
cur2frac Converts decimal currency values to fractional values
cur2str Converts a value to Financial Toolbox bank format
frac2cur Converts fractional currency values to decimal values

These examples show their use.

```
Dec = frac2cur('12.1', 8)
```

returns Dec $=12.125$, which is the decimal equivalent of $12-1 / 8$. The second input variable is the denominator of the fraction.

```
Str = cur2str(-8264, 2)
```

returns the string (\$8264.00). For this toolbox function, the output format is a numerical format with dollar sign prefix, two decimal places, and negative numbers in parentheses; e.g., (\$123.45) and \$6789.01. The standard MATLAB bank format uses two decimal places, no dollar sign, and a minus sign for negative numbers; e.g., -123.45 and 6789.01.

Charting Financial Data

The following toolbox financial charting functions plot financial data and produce presentation-quality figures quickly and easily.

bolling	Bollinger band chart
candle	Candlestick chart
pointfig	Point and figure chart
highlow	High, low, open, close chart
movavg	Leading and lagging moving averages chart

These functions work with standard MATLAB functions that draw axes, control appearance, and add labels and titles. For users having additional charting requirements, the Financial Time Series Toolbox provides a more comprehensive set of charting functions.
Here are two plotting examples: a high-low-close chart of sample IBM stock price data, and a Bollinger band chart of the same data. These examples load data from an external file (ibm. dat), then call the functions using subsets of the data. ibm is a six-column matrix where each row is a trading day's data and where columns 2 , 3 , and 4 contain the high, low, and closing prices, respectively.

Note The data in ibm.dat is fictional and for illustrative use only.

High-Low-Close Chart Example

First load the data and set up matrix dimensions. load and size are standard MATLAB functions.

```
load ibm.dat;
[ro, co] = size(ibm);
```

Open a figure window for the chart. Use the Financial Toolbox highlow function to plot high, low, and close prices for the last 50 trading days in the data file.

```
figure;
highlow(ibm(ro-50:ro,2),ibm(ro-50:ro,3),ibm(ro-50:ro,4),[],'b');
```

Add labels and title, and set axes with standard MATLAB functions. Use the Financial Toolbox dateaxis function to provide dates for the x-axis ticks.

```
xlabel('');
ylabel('Price ($)');
title('International Business Machines, 941231 - 950219');
axis([0 50 -inf inf]);
dateaxis('x',6,'31-Dec-1994')
```

MATLAB produces a figure similar to this. The plotted data and axes you see may differ. Viewed online, the high-low-close bars are blue.

Bollinger Chart Example

Next the Financial Toolbox bolling function produces a Bollinger band chart using all the closing prices in the same IBM stock price matrix. A Bollinger band chart plots actual data along with three other bands of data. The upper
band is two standard deviations above a moving average; the lower band is two standard deviations below that moving average; and the middle band is the moving average itself. This example uses a 15 -day moving average.
Assuming the previous IBM data is still loaded, simply execute the Financial Toolbox function.

```
bolling(ibm(:,4), 15, 0);
```

Specify the axes, labels, and titles. Again, use dateaxis to add the x-axis dates.

```
axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);
ylabel('Price ($)');
title(['International Business Machines']);
dateaxis('x', 6,'31-Dec-1994')
```


For help using MATLAB plotting functions, see "Creating Plots" in the MATLAB documentation. See the MATLAB documentation for details on the axis, title, xlabel, and ylabel functions.

Analyzing and Computing Cash Flows

The Financial Toolbox cash-flow functions compute interest rates, rates of return, present or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of $\$ 20,000$ followed by three annual return payments, a second investment of $\$ 5,000$, then four more returns. Investments are negative cash flows, return payments are positive cash flows.

```
Stream = [-20000, 2000, 2500, 3500, -5000, 6500,\ldots
    9500, 9500, 9500];
```


Interest Rates/Rates of Return

Several functions calculate interest rates involved with cash flows. To compute the internal rate of return of the cash stream, simply execute the toolbox function irr

$$
\text { ROR }=\operatorname{irr}(\text { Stream })
$$

which gives a rate of return of 11.72%.
Note that the internal rate of return of a cash flow may not have a unique value. Every time the sign changes in a cash flow, the equation defining irr can give up to two additional answers. An irr computation requires solving a polynomial equation, and the number of real roots of such an equation can depend on the number of sign changes in the coefficients. The equation for internal rate of return is

$$
\frac{c f_{1}}{(1+r)}+\frac{c f_{2}}{(1+r)^{2}}+\ldots+\frac{c f_{n}}{(1+r)^{n}}+\text { Investment }=0
$$

where Investment is a (negative) initial cash outlay at time $0, c f_{n}$ is the cash flow in the nth period, and n is the number of periods. Basically, irr finds the rate r such that the net present value of the cash flow equals the initial investment. If all of the $c f_{n} \mathrm{~s}$ are positive there is only one solution. Every time there is a change of sign between coefficients, up to two additional real roots are possible. There is usually only one answer that makes sense, but it is possible to get returns of both 5% and 11% (for example) from one income stream.

Another toolbox rate function, effrr, calculates the effective rate of return given an annual interest rate (also known as nominal rate or annual percentage rate, APR) and number of compounding periods per year. To find the effective rate of a 9% APR compounded monthly, simply enter

```
Rate = effrr(0.09, 12)
```

The answer is 9.38%.
A companion function nomrr computes the nominal rate of return given the effective annual rate and the number of compounding periods.

Present or Future Values

The toolbox includes functions to compute the present or future value of cash flows at regular or irregular time intervals with equal or unequal payments: fvfix, fvvar, pvfix, and pvvar. The -fix functions assume equal cash flows at regular intervals, while the -var functions allow irregular cash flows at irregular periods.

Now compute the net present value of the sample income stream for which you computed the internal rate of return. This exercise also serves as a check on that calculation because the net present value of a cash stream at its internal rate of return should be zero. Enter

```
NPV = pvvar(Stream, ROR)
```

which returns an answer very close to zero. The answer usually is not exactly zero due to rounding errors and the computational precision of the computer.

Note Other toolbox functions behave similarly. The functions that compute a bond's yield, for example, often must solve a nonlinear equation. If you then use that yield to compute the net present value of the bond's income stream, it usually does not exactly equal the purchase price - but the difference is negligible for practical applications.

Depreciation

The toolbox includes functions to compute standard depreciation schedules: straight line, general declining-balance, fixed declining-balance, and sum of years' digits. Functions also compute a complete amortization schedule for an asset, and return the remaining depreciable value after a depreciation schedule has been applied.

This example depreciates an automobile worth $\$ 15,000$ over five years with a salvage value of $\$ 1,500$. It computes the general declining balance using two different depreciation rates: 50% (or 1.5), and 100% (or 2.0, also known as double declining balance). Enter

```
Decline1 = depgendb(15000, 1500, 5, 1.5)
Decline2 = depgendb(15000, 1500, 5, 2.0)
```

which returns

Decline1 $=$				
4500.00	3150.00	2205.00	1543.50	2101.50
Decline2 $=$				
6000.00	3600.00	2160.00	1296.00	444.00

These functions return the actual depreciation amount for the first four years and the remaining depreciable value as the entry for the fifth year.

Annuities

Several toolbox functions deal with annuities. This first example shows how to compute the interest rate associated with a series of loan payments when only the payment amounts and principal are known. For a loan whose original value was $\$ 5000.00$ and which was paid back monthly over four years at \$130.00/month

```
Rate = annurate(4*12, 130, 5000, 0, 0)
```

The function returns a rate of 0.0094 monthly, or approximately 11.28% annually.

The next example uses a present-value function to show how to compute the initial principal when the payment and rate are known. For a loan paid at $\$ 300.00 /$ month over four years at 11% annual interest

```
Principal = pvfix(0.11/12, 4*12, 300, 0, 0)
```

The function returns the original principal value of $\$ 11,607.43$.
The final example computes an amortization schedule for a loan or annuity. The original value was $\$ 5000.00$ and was paid back over 12 months at an annual rate of 9%.

```
[Prpmt, Intpmt, Balance, Payment] = ...
    amortize(0.09/12, 12, 5000, 0, 0);
```

This function returns vectors containing the amount of principal paid,

```
Prpmt = [\begin{array}{llllll}{402.76 405.78}&{408.82}&{411.89}&{414.97}&{418.09}\end{array}]
    421.22 424.38 427.56 430.77 434.00 437.26]
```

the amount of interest paid,


```
    16.03 12.88 9.69 6.49 3.26 0.00]
```

the remaining balance for each period of the loan,


```
    2556.03 2137.94 1716.72 1292.34 864.77
    434.00 0.00]
```

and a scalar for the monthly payment.

```
Payment = 437.26
```


Pricing and Computing Yields for Fixed-Income Securities

The Securities Industry Association (SIA) has established conventions regarding bond pricing, yield calculation and quotation, time factors and accrued interest, coupon and quasi-coupon dates, and duration and convexity sensitivity measures. The Financial Toolbox includes SIA-compliant functions to compute accrued interest, determine prices and yields, as well as calculate convexity and duration of fixed-income securities. It also includes a set of functions to generate and analyze term structure of interest rates.

SIA-compliant functions can be used with U.S. Treasury bills, bonds, and notes; corporate bonds; and municipal bonds. Bonds can have long, normal or short first or last coupon periods.

The "Function Reference" identifies SIA-compliant functions. These functions have been thoroughly tested against the benchmarks found in Jan Mayle's Standard Securities Calculation Methods document listed in the "Bibliography."

Terminology

Since terminology varies among texts on this subject, here are some basic definitions that apply to these Financial Toolbox functions. The Glossary contains additional definitions.

The settlement date of a bond is the date when money first changes hands; i.e., when a buyer pays for a bond. It need not coincide with the issue date, which is the date a bond is first offered for sale.

The first coupon date and last coupon date are the dates when the first and last coupons are paid, respectively. Although bonds typically pay periodic annual or semiannual coupons, the length of the first and last coupon periods may differ from the standard coupon period. The toolbox includes price and yield functions that handle these odd first and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon period for the fixed income security of interest, and do not necessarily coincide with actual coupon payment dates. The toolbox includes functions that calculate both actual and quasi-coupon dates for bonds with odd first and/or last periods.

Fixed-income securities can be purchased on dates that do not coincide with coupon payment dates. In this case, the bond owner is not entitled to the full
value of the coupon for that period. When a bond is purchased between coupon dates, the buyer must compensate the seller for the pro-rata share of the coupon interest earned from the previous coupon payment date. This pro-rata share of the coupon payment is called accrued interest. The purchase price, the price actually paid for a bond, is the quoted market price plus accrued interest.
The maturity date of a bond is the date when the issuer returns the final face value, also known as the redemption value or par value, to the buyer. The yield-to-maturity of a bond is the nominal compound rate of return that equates the present value of all future cash flows (coupons and principal) to the current market price of the bond.

The period of a bond refers to the frequency with which the issuer of a bond makes coupon payments to the holder.

Table 2-1: Period of a Bond

Period Value	Payment Schedule
0	No coupons. (Zero coupon bond.)
1	Annual
2	Semiannual
3	Tri-annual
4	Quarterly
6	Bi-monthly
12	Monthly

The basis of a bond refers to the basis or day-count convention for a bond. Basis is normally expressed as a fraction in which the numerator determines the number of days between two dates, and the denominator determines the number of days in the year. For example, the numerator of actual /actual means that when determining the number of days between two dates, count the actual number of days; the denominator means that you use the actual
number of days in the given year in any calculations (either 365 or 366 days depending on whether or not the given year is a leap year).

Table 2-2: Basis of a Bond

Basis Value	Meaning	Description
0 (default)	actual/actual	Actual days held over actual days in coupon period. Denominator is 365 in most years and 366 in a leap yer.
1	$30 / 360$ (SIA)	Each month contains 30 days; a year contains 360 days. Payments are adjusted for bonds that pay coupons on the last day of February.
2	actual/360	Actual days held over 360.
3	actual/365 Securities Association)	Actual days held over 365, even in leap years.
4	Each month contains 30 days; a year contains 360 days. If the last date of the period is the last day of February, the month is extended to 30 days.	
5	$30 / 360$ ISDA(International Swap Dealers Association)	Variant of 30/360 with slight differences for calculating number of days in a month.
6	$30 / 360$ European	Variant of 30/360 used primarily in Europe.
7	actual/365 Japanese	All years contain 365 days. Leap days are ignored.

Note Although the concept of day count sounds deceptively simple, the actual calculation of day counts can be quite complex. You can find a good discussion of day counts and the formulas for calculating them in Chapter 5 of Stigum and Robinson, Money Market and Bond Calculations.

The end-of-month rule affects a bond's coupon payment structure. When the rule is in effect, a security that pays a coupon on the last actual day of a month will always pay coupons on the last day of the month. This means, for example, that a semiannual bond that pays a coupon on February 28 in nonleap years will pay coupons on August 31 in all years and on February 29 in leap years.

Table 2-3: End-of-Month Rule

End of Month Rule Value	Meaning
1 (default)	Rule in effect.
0	Rule not in effect.

SIA Framework

Many of the fixed-income related functions in the Financial Toolbox comply with the Securities Industry Association (SIA) conventions. Although not all SIA-compliant functions require the same input arguments, they all accept the following common set of input arguments.

Table 2-4: SIA Common Input Arguments

Input	Meaning
Settle	Settlement date
Maturity	Maturity date
Period	Coupon payment period
Basis	Day-count basis

Table 2-4: SIA Common Input Arguments

Input	Meaning
EndMonthRule	End-of-month payment rule
IssueDate	Bond issue date
FirstCouponDate	First coupon payment date
LastCouponDate	Last coupon payment date

Of the common input arguments, only Settle and Maturity are required. All others are optional. They will be set to the default values if you do not explicitly set them. Note that, by default, the FirstCouponDate and LastCouponDate are nonapplicable. In other words, if you do not specify FirstCouponDate and LastCouponDate, the bond is assumed to have no odd first or last coupon periods. In this case, the bond is simply a standard bond with a coupon payment structure based solely on the maturity date.

SIA Default Parameter Values

To illustrate the use of default values in SIA-compliant functions, consider the cfdates function, which computes actual cash flow payment dates for a portfolio of fixed income securities regardless of whether the first and/or last coupon periods are normal, long, or short.

The complete calling syntax with the full input argument list is

```
CFlowDates = cfdates(Settle, Maturity, Period, Basis, ...
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
```

while the minimal calling syntax requires only settlement and maturity dates

```
CFlowDates = cfdates(Settle, Maturity)
```


Single Bond Example

As an example, suppose you have a bond with these characteristics

Settle	$=' 20-$ Sep-1999'
Maturity	$=' 15-$ Oct-2007'
Period	$=2$
Basis	$=0$
EndMonthRule	$=1$

```
IssueDate = NaN
FirstCouponDate = NaN
LastCouponDate = NaN
```

Note that Period, Basis, and EndMonthRule are set to their default values, and IssueDate, FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE arithmetic standard for Not-a-Number and is used to indicate the result of an undefined operation (e.g., zero divided by zero).
However, NaN is also a very convenient placeholder. In the SIA functions of the Financial Toolbox, NaN indicates the presence of a nonapplicable value. It tells the SIA fixed-income functions to ignore the input value and apply the default. Setting IssueDate, FirstCouponDate, and LastCouponDate to NaN in this example tells cfdates to assume that the bond has been issued prior to settlement and that no odd first or last coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.

```
cfdates(Settle, Maturity)
cfdates(Settle, Maturity, Period)
cfdates(Settle, Maturity, Period, [])
cfdates(Settle, Maturity, [], Basis)
cfdates(Settle, Maturity, [], [])
cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)
cfdates(Settle, Maturity, Period, [], [], IssueDate)
cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])
cfdates(Settle, Maturity, Period, [], [], [], [],LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ...
IssueDate, FirstCouponDate, LastCouponDate)
```

Thus, leaving a particular input unspecified has the same effect as passing an empty matrix ([]) or passing a NaN - all three tell cfdates (and other SIA-compliant functions) to use the default value for a particular input parameter.

Bond Porffolio Example

Since the previous example included only a single bond, there was no difference between passing an empty matrix or passing a NaN for an optional input argument. For a portfolio of bonds, however, using NaN as a placeholder is the
only way to specify default acceptance for some bonds while explicitly setting nondefault values for the remaining bonds in the portfolio.

Now suppose you have a portfolio of two bonds.

```
Settle = '20-Sep-1999'
Maturity = ['15-Oct-2007'; '15-Oct-2010']
```

These calls to cfdates all set the coupon period to its default value (Period $=2$) for both bonds.

```
cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [])
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)
```

The first two calls explicitly set Period $=2$. Since Maturity is a 2 -by- 1 vector of maturity dates, cfdates knows you have a two-bond portfolio.

The first call specifies a single (i.e., scalar) 2 for Period. Passing a scalar tells cfdates to apply the scalar-valued input to all bonds in the portfolio. This is an example of implicit scalar-expansion. Note that the settlement date has been implicit scalar-expanded as well.
The second call also applies the default coupon period by explicitly passing a two-element vector of 2's. The third call passes an empty matrix, which cfdates interprets as an invalid period, for which the default value will be used. The fourth call is similar, except that a NaN has been passed. The fifth call passes two NaN's, and has the same effect as the third. The last call passes the minimal input set.

Finally, consider the following calls to cfdates for the same two-bond portfolio.

```
cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])
```

The first call explicitly sets Period $=4$ for the first bond and implicitly sets the default Period $=2$ for the second bond. The second call has the same effect as the first but explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The default-handling process illustrated in the examples applies to any of the optional input arguments.

SIA Coupon Date Calculations

Calculating coupon dates, either actual or quasi dates, is notoriously complicated. The Financial Toolbox follows the SIA conventions in coupon date calculations.

The first step in finding the coupon dates associated with a bond is to determine the reference, or synchronization date (the sync date). Within the SIA framework, the order of precedence for determining the sync date is (1) the first coupon date, (2) the last coupon date, and finally (3) the maturity date.
In other words, an SIA-compliant function in the Financial Toolbox first examines the FirstCouponDate input. If FirstCouponDate is specified, coupon payment dates and quasi-coupon dates are computed with respect to FirstCouponDate; if FirstCouponDate is unspecified, empty ([]), or NaN, then the LastCouponDate is examined. If LastCouponDate is specified, coupon payment dates and quasi-coupon dates are computed with respect to LastCouponDate. If both FirstCouponDate and LastCouponDate are unspecified, empty ([]), or NaN, the Maturity (a required input argument) serves as the sync date.

SIA Semiannual Yield Conventions

Within the SIA framework, all yields and time factors for price-to-yield conversion are quoted on a semiannual bond basis (see bndprice, bndyield, and cfamounts) regardless of the period of the bond's coupon payments (including zero-coupon bonds). In addition, any yield-related sensitivity (i.e., duration and convexity), when quoted on a periodic basis, assumes semiannual coupon periods. (See bndconvp, bndconvy, bnddurp, and bnddury).

Pricing Functions

This example shows how easily you can compute the price of a bond with an odd first period using the SIA-compliant function bndprice. Assume you have a bond with these characteristics

```
Settle = '11-Nov-1992';
Maturity = '01-Mar-2005';
IssueDate = '15-Oct-1992';
FirstCouponDate = '01-Mar-1993';
CouponRate = 0.0785;
Yield = 0.0625;
```

Allow coupon payment period (Period $=2$), day-count basis (Basis $=0$), and end-of-month rule (EndMonthRule $=1$) to assume the default values. Also, assume there is no odd last coupon date and that the face value of the bond is $\$ 100$. Calling the function

```
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ...
Maturity, [], [], [], IssueDate, FirstCouponDate)
```

returns a price of $\$ 113.60$ and accrued interest of $\$ 0.59$.
Similar functions compute prices with regular payments, odd first and last periods, as well as prices of Treasury bills and discounted securities such as zero-coupon bonds.

Note bndprice and other SIA-compliant functions use nonlinear formulas to compute the price of a security. For this reason, the Financial Toolbox uses Newton's method when solving for an independent variable within a formula. See any elementary numerical methods textbook for the mathematics underlying Newton's method.

Yield Functions

To illustrate toolbox yield functions, compute the yield of a bond that has odd first and last periods and settlement in the first period. First set up variables for settlement, maturity date, issue, first coupon, and a last coupon date.

```
Settle = '12-Jan-2000';
Maturity = '01-Oct-2001';
```

```
IssueDate = '01-Jan-2000';
FirstCouponDate = '15-Jan-2000';
LastCouponDate = '15-Apr-2000';
```

Assume a face value of $\$ 100$. Specify a purchase price of $\$ 95.70$, a coupon rate of 4%, quarterly coupon payments, and a 30/360 day-count convention (Basis = 1).

Price $\quad=95.7$;
CouponRate $=0.04$;
Period $=4$;
Basis $=1$;
EndMonthRule = 1;
Calling the function
Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,...
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
returns
Yield $=0.0659$ (6.60\%).

Fixed-Income Sensitivities

The toolbox includes SIA-compliant functions to perform sensitivity analysis such as convexity and the Macaulay and modified durations for fixed-income securities. The Macaulay duration of an income stream, such as a coupon bond, measures how long, on average, the owner waits before receiving a payment. It is the weighted average of the times payments are made, with the weights at time T equal to the present value of the money received at time T. The modified duration is the Macaulay duration discounted by the per-period interest rate; i.e., divided by (1+rate/frequency).

To illustrate, the following example computes the annualized Macaulay and modified durations, and the periodic Macaulay duration for a bond with settlement (12-Jan-2000) and maturity (01-Oct-2001) dates as above, a 5% coupon rate, and a 4.5% yield to maturity. For simplicity, any optional input arguments assume default values (i.e., semiannual coupons, and day-count basis $=0$ (actual/actual), coupon payment structure synchronized to the maturity date, and end-of-month payment rule in effect).

```
CouponRate = 0.05;
```

```
Yield = 0.045;
[ModDuration, YearDuration, PerDuration] = bnddury(Yield,...
CouponRate, Settle, Maturity)
```

The durations are

```
ModDuration = 1.6107 (years)
YearDuration = 1.6470 (years)
PerDuration = 3.2940 (semiannual periods)
```

Note that the semiannual periodic Macaulay duration (PerDuration) is twice the annualized Macaulay duration (YearDuration).

Term Structure of Interest Rates

The toolbox contains several functions to derive and analyze interest rate curves, including data conversion and extrapolation, bootstrapping, and interest-rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is dealing with market data reported in different formats. Treasury bills, for example, are quoted with bid and asked bank-discount rates. Treasury notes and bonds, on the other hand, are quoted with bid and asked prices based on $\$ 100$ face value. To examine the full spectrum of Treasury securities, analysts must convert data to a single format. Toolbox functions ease this conversion. This brief example uses only one security each; analysts often use 30,100 , or more of each.

First, capture Treasury bill quotes in their reported format

$\%$	Maturity	Days	Bid	Ask	AskYield
TBill $=$ [datenum('12/26/2000')	53	0.0503	0.0499	$0.0510] ;$	

then capture Treasury bond quotes in their reported format

$\%$	Coupon	Maturity	Bid	Ask
TBond $=\left[\begin{array}{lll}0.08875 & \text { datenum }(2001,11,5) & 103+4 / 32\end{array}\right.$	103+6/32	$0.0564] ;$		

and note that these quotes are based on a November 3, 2000 settlement date.

```
Settle = datenum('3-Nov-2000');
```

Next use the toolbox tbl2bond function to convert the Treasury bill data to Treasury bond format.

```
TBTBond = tbl2bond(TBill)
TBTBond =
    0 730846 99.26 99.27 0.05
```

(The second element of TBTBond is the serial date number for December 26, 2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data to set up the overall term structure.

```
TBondsAll = [TBTBond; TBond]
TBondsAll =
\begin{tabular}{rrrrr}
0 & 730846 & 99.26 & 99.27 & 0.05 \\
0.09 & 731160 & 103.13 & 103.19 & 0.06
\end{tabular}
```

The toolbox provides a second data-preparation function,tr2bonds, to convert the bond data into a form ready for the bootstrapping functions. tr2bonds generates a matrix of bond information sorted by maturity date, plus vectors of prices and yields.

```
[Bonds, Prices, Yields] = tr2bonds(TBondsAll);
```

With this market data, you are now ready to use one of the toolbox bootstrapping functions to derive an implied zero curve. Bootstrapping is a process whereby you begin with known data points and solve for unknown data points using an underlying arbitrage theory. Every coupon bond can be valued as a package of zero-coupon bonds which mimic its cash flow and risk characteristics. By mapping yields-to-maturity for each theoretical zero-coupon bond, to the dates spanning the investment horizon, you can create a theoretical zero-rate curve. The toolbox provides two bootstrapping functions: zbtprice derives a zero curve from bond data and prices, and zbtyield derives a zero curve from bond data and yields. Using zbtprice

```
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)
ZeroRates =
```

 0.05
    ```
    0.06
    CurveDates =
        7 3 0 8 4 6
        7 3 1 1 6 0
```

CurveDates gives the investment horizon.
datestr(CurveDates)
ans =
26-Dec-2000
05-Nov-2001

Additional toolbox functions construct discount, forward, and par yield curves from the zero curve, and vice versa.

```
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...
Settle);
[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);
[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle);
```


Pricing and Analyzing Equity Derivatives

These toolbox functions compute prices, sensitivities, and profits for portfolios of options or other equity derivatives. They use the Black-Scholes model for European options and the binomial model for American options. Such measures are useful for managing portfolios and for executing collars, hedges, and straddles.

Sensitivity Measures

There are six basic sensitivity measures associated with option pricing: delta, gamma, lambda, rho, theta, and vega - the "greeks." The toolbox provides functions for calculating each sensitivity and for implied volatility.

Delta

Delta of a derivative security is the rate of change of its price relative to the price of the underlying asset. It is the first derivative of the curve that relates the price of the derivative to the price of the underlying security. When delta is large, the price of the derivative is sensitive to small changes in the price of the underlying security.

Gamma

Gamma of a derivative security is the rate of change of delta relative to the price of the underlying asset; i.e., the second derivative of the option price relative to the security price. When gamma is small, the change in delta is small. This sensitivity measure is important for deciding how much to adjust a hedge position.

Lambda

Lambda, also known as the elasticity of an option, represents the percentage change in the price of an option relative to a 1% change in the price of the underlying security.

Rho
Rho is the rate of change in option price relative to the risk-free interest rate.

Theta

Theta is the rate of change in the price of a derivative security relative to time. Theta is usually very small or negative since the value of an option tends to drop as it approaches maturity.

Vega

Vega is the rate of change in the price of a derivative security relative to the volatility of the underlying security. When vega is large the security is sensitive to small changes in volatility. For example, options traders often must decide whether to buy an option to hedge against vega or gamma. The hedge selected usually depends upon how frequently one rebalances a hedge position and also upon the standard deviation of the price of the underlying asset (the volatility). If the standard deviation is changing rapidly, balancing against vega is usually preferable.

Implied Volatility

The implied volatility of an option is the standard deviation that makes an option price equal to the market price. It helps determine a market estimate for the future volatility of a stock and provides the input volatility (when needed) to the other Black-Scholes functions.

Analysis Models

Toolbox functions for analyzing equity derivatives use the Black-Scholes model for European options and the binomial model for American options. The Black-Scholes model makes several assumptions about the underlying securities and their behavior. The binomial model, on the other hand, makes far fewer assumptions about the processes underlying an option. For further explanation, see the book by John Hull listed in the Bibliography.

Black-Scholes Model

Using the Black-Scholes model entails several assumptions:

- The prices of the underlying asset follow an Ito process. (See Hull, page 222.)
- The option can be exercised only on its expiration date (European option).
- Short selling is permitted.
- There are no transaction costs.
- All securities are divisible.
- There is no riskless arbitrage.
- Trading is a continuous process.
- The risk-free interest rate is constant and remains the same for all maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate model.

To illustrate toolbox Black-Scholes functions, this example computes the call and put prices of a European option and its delta, gamma, lambda, and implied volatility. The asset price is $\$ 100.00$, the exercise price is $\$ 95.00$, the risk-free interest rate is 10%, the time to maturity is 0.25 years, the volatility is 0.50 , and the dividend rate is 0 . Simply executing the toolbox functions

```
[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);
[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);
GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);
VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);
[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);
```

yields:

- The option call price OptCall = \$13.70
- The option put price OptPut $=\$ 6.35$
- delta for a call CallVal $=0.6665$ and delta for a put PutVal $=-0.3335$
- gamma GammaVal $=0.0145$
- vega VegaVal = 18.1843
- lambda for a call LamCall $=4.8664$ and lambda for a put LamPut $=-5.2528$

Now as a computation check, find the implied volatility of the option using the call option price from blsprice.

```
Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);
```

The function returns an implied volatility of 0.500 , the original blsprice input.

Binomial Model

The binomial model for pricing options or other equity derivatives assumes that the probability over time of each possible price follows a binomial distribution. The basic assumption is that prices can move to only two values,
one up and one down, over any short time period. Plotting the two values, and then the subsequent two values each, and then the subsequent two values each, and so on over time, is known as "building a binomial tree." This model applies to American options, which can be exercised any time up to and including their expiration date.

This example prices an American call option using a binomial model. Again, the asset price is $\$ 100.00$, the exercise price is $\$ 95.00$, the risk-free interest rate is 10%, and the time to maturity is 0.25 years. It computes the tree in increments of 0.05 years, so there are $0.25 / 0.05=5$ periods in the example. The volatility is 0.50 , this is a call ($\mathrm{flag}=1$), the dividend rate is 0 , and it pays a dividend of $\$ 5.00$ after three periods (an ex-dividend date). Executing the toolbox function

```
[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,...
0.05, 0.50, 1, 0, 5.0, 3);
```

returns the tree of prices of the underlying asset

| StockPrice $=$ | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | |
| 100.00 | 111.27 | 123.87 | 137.96 | 148.69 | 166.28 | | | | | | |
| 0 | 89.97 | 100.05 | 111.32 | 118.90 | 132.96 | | | | | | |
| 0 | 0 | 81.00 | 90.02 | 95.07 | 106.32 | | | | | | |
| 0 | 0 | 0 | 72.98 | 76.02 | 85.02 | | | | | | |
| 0 | 0 | 0 | 0 | 60.79 | 67.98 | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 54.36 | | | | | | |

and the tree of option values.

| OptionPrice $=$ | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | |
| 12.10 | 19.17 | 29.35 | 42.96 | 54.17 | 71.28 |
| 0 | 5.31 | 9.41 | 16.32 | 24.37 | 37.96 |
| 0 | 0 | 1.35 | 2.74 | 5.57 | 11.32 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

The output from the binomial function is a binary tree. Read the StockPrice matrix this way: column 1 shows the price for period 0 , column 2 shows the up and down prices for period 1 , column 3 shows the up-up, up-down, and down-down prices for period 2, etc. Ignore the zeros. The OptionPrice matrix
gives the associated option value for each node in the price tree. Ignore the zeros that correspond to a zero in the price tree.

Portfolio Analysis

Analyzing Portfolios (p. 3-2)
Portfolio Optimization Functions(p. 3-3)
Portfolio Construction Examples(p. 3-5)
Portfolio Selection and Risk Aversion(p. 3-8)
Constraint Specification (p. 3-12)Active Returns and Tracking ErrorEfficient Frontier (p. 3-20)

Managing risk and return
Tables of functions for portfolio optimization

Constructing portfolios on the efficient frontier

Controlling portfolio risk

Managing portfolio constraints
Minimize the variance of the difference in returns with respect to a given target portfolio

Analyzing Portfolios

Portfolio managers concentrate their efforts on achieving the best possible trade-off between risk and return. For portfolios constructed from a fixed set of assets, the risk/return profile varies with the portfolio composition. Portfolios that maximize the return, given the risk, or, conversely, minimize the risk for the given return, are called optimal. Optimal portfolios define a line in the risk/return plane called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered. Different investors have different levels of risk tolerance. Selecting the adequate portfolio for a particular investor is a difficult process. The portfolio manager can hedge the risk related to a particular portfolio along the efficient frontier with partial investment in risk-free assets. The definition of the capital allocation line, and finding where the final portfolio falls on this line, if at all, is a function of:

- The risk/return profile of each asset
- The risk-free rate
- The borrowing rate
- The degree of risk aversion characterizing an investor

The Financial Toolbox includes a set of portfolio optimization functions designed to find the portfolio that best meets investor requirements.

Portfolio Optimization Functions

The portfolio optimization functions assist portfolio managers in constructing portfolios that optimize risk and return.

Capital Allocation

portalloc Computes the optimal risky portfolio on the efficient frontier, based on the risk-free rate, the borrowing rate, and the investor's degree of risk aversion. Also generates the capital allocation line, which provides the optimal allocation of funds between the risky portfolio and the risk-free asset.

Efficient Frontier Computation

frontcon Computes portfolios along the efficient frontier for a given group of assets. The computation is based on sets of constraints representing the maximum and minimum weights for each asset, and the maximum and minimum total weight for specified groups of assets.
portopt Computes portfolios along the efficient frontier for a given group of assets. The computation is based on a set of user-specified linear constraints. Typically, these constraints are generated using the constraint specification functions described below.

Constraint Specification

portcons Generates the portfolio constraints matrix for a portfolio of asset investments using linear inequalities. The inequalities are of the type $A^{*} W$ ts ' $<=b$, where Wts is a row vector of weights. The capabilities of portcons are also provided individually by the following functions.

| Constraint Specification (continued) | | |
| :---: | :---: | :--- |
| | pcalims | Asset minimum and maximum allocation.
 Generates a constraint set to fix the minimum and
 maximum weight for each individual asset. |
| pcgcomp | Group-to-group ratio constraint. Generates a
 constraint set specifying the maximum and
 minimum ratios between pairs of groups. | |
| | pcglims | Asset group minimum and maximum allocation.
 Generates a constraint set to fix the minimum and
 maximum total weight for each defined group of
 assets. |
| pcpval | Total portfolio value. Generates a constraint set to
 fix the total value of the portfolio. | |

Constraint Conversion

| abs2active | Transforms a constraint matrix expressed in absolute
 weight format to an equivalent matrix expressed in
 active weight format. |
| :--- | :--- |
| active2abs | Transforms a constraint matrix expressed in active
 weight format to an equivalent matrix expressed in
 absolute weight format. |

Portfolio Construction Examples

The efficient frontier computation functions require information about each asset in the portfolio. This data is entered into the function via two matrices: an expected return vector and a covariance matrix. The expected return vector contains the average expected return for each asset in the portfolio. The covariance matrix is a square matrix representing the interrelationships between pairs of assets. This information can be directly specified or can be estimated from an asset return time series with the function ewstats.

Efficient Frontier Example

This example computes the efficient frontier of portfolios consisting of three different assets using the function frontcon. To visualize the efficient frontier curve clearly, consider 10 different evenly spaced portfolios.

Assume that the expected return of the first asset is 10%, the second is 20%, and the third is 15%. The covariance is defined in the matrix ExpCovariance.
ExpReturn $=\left[\begin{array}{llrr}0.1 & 0.20 .15\end{array}\right] ;$
ExpCovariance $=\left[\begin{array}{rrrr} & 0.005 & -0.010 & 0.004 ; \\ & -0.010 & 0.040 & -0.002 ; \\ & 0.004 & -0.002 & 0.023\end{array}\right]$

NumPorts = 10;
Since there are no constraints, you can call frontcon directly with the data you already have. If you call frontcon without specifying any output arguments, you get a graph representing the efficient frontier curve.
frontcon (ExpReturn, ExpCovariance, NumPorts);

Calling frontcon while specifying the output arguments returns the corresponding vectors and arrays representing the risk, return, and weights for each of the 10 points computed along the efficient frontier.

```
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts)
PortRisk =
    0.0392
    0.0445
    0 . 0 5 5 9
    0.0701
    0.0858
    0.1023
    0.1192
    0.1383
    0.1661
    0.2000
PortReturn =
```

```
    0.1231
    0.1316
    0.1402
    0.1487
    0.1573
    0.1658
    0.1744
    0.1829
    0.1915
    0.2000
PortWts =
\begin{tabular}{rrr}
0.7692 & 0.2308 & 0.0000 \\
0.6667 & 0.2991 & 0.0342 \\
0.5443 & 0.3478 & 0.1079 \\
0.4220 & 0.3964 & 0.1816 \\
0.2997 & 0.4450 & 0.2553 \\
0.1774 & 0.4936 & 0.3290 \\
0.0550 & 0.5422 & 0.4027 \\
0 & 0.6581 & 0.3419 \\
0 & 0.8291 & 0.1709 \\
0 & 1.0000 & 0.0000
\end{tabular}
```

The output data is represented row-wise. Each portfolio's risk, rate of return, and associated weights are identified as corresponding rows in the vectors and matrix.

For example, you can see from these results that the second portfolio has a risk of 0.0445 , an expected return of 13.16%, and allocations of about 67% in the first asset, 30% in the second, and 3% in the third.

Portfolio Selection and Risk Aversion

One of the factors to consider when selecting the optimal portfolio for a particular investor is degree of risk aversion. This level of aversion to risk can be characterized by defining the investor's indifference curve. This curve consists of the family of risk/return pairs defining the trade-off between the expected return and the risk. It establishes the increment in return that a particular investor will require in order to make an increment in risk worthwhile. Typical risk aversion coefficients range between 2.0 and 4.0 , with the higher number representing lesser tolerance to risk. The equation used to represent risk aversion in the Financial Toolbox is

$$
U=E(r) \quad 0.005^{*} A^{*} \operatorname{sig}^{\wedge} 2
$$

where:
U is the utility value.
$E(r)$ is the expected return.
A is the index of investor's aversion.
sig is the standard deviation.

Optimal Risky Portfolio Example

This example computes the optimal risky portfolio on the efficient frontier based upon the risk-free rate, the borrowing rate, and the investor's degree of risk aversion. You do this with the function portalloc.

First generate the efficient frontier data using either portopt or frontcon. This example uses portopt and the same asset data from the previous example.

```
ExpReturn = [0.1 0.2 0.15];
ExpCovariance = [ 0.005 -0.010 0.004;
    -0.010 0.040 -0.002;
    0.004 -0.002 0.023];
```

This time consider 20 different points along the efficient frontier.

```
NumPorts = 20;
```

```
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, NumPorts);
```

As with frontcon, calling portopt while specifying output arguments returns the corresponding vectors and arrays representing the risk, return, and weights for each of the portfolios along the efficient frontier. Use them as the first three input arguments to the function portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds between the risky portfolio and the risk-free asset, using these values for the risk-free rate, borrowing rate and investor's degree of risk aversion.

```
RisklessRate = 0.08
BorrowRate = 0.12
RiskAversion = 3
```

Calling portalloc without specifying any output arguments gives a graph displaying the critical points.

```
portalloc (PortRisk, PortReturn, PortWts, RisklessRate,...
BorrowRate, RiskAversion);
```


Calling portalloc while specifying the output arguments returns the variance (RiskyRisk), the expected return (RiskyReturn), and the weights (RiskyWts) allocated to the optimal risky portfolio. It also returns the fraction (RiskyFraction) of the complete portfolio allocated to the risky portfolio, and the variance (OverallRisk) and expected return (OverallReturn) of the optimal overall portfolio. The overall portfolio combines investments in the risk-free asset and in the risky portfolio. The actual proportion assigned to each of these two investments is determined by the degree of risk aversion characterizing the investor.

```
[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,...
OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,...
RisklessRate, BorrowRate, RiskAversion)
RiskyRisk = 0.1288
RiskyReturn = 0.1791
RiskyWts = 0.0057 0.5879 0.4064
RiskyFraction = 1.1869
OverallRisk = 0.1529
OverallReturn = 0.1902
```

The value of RiskyFraction exceeds 1 (100\%), implying that the risk tolerance specified allows borrowing money to invest in the risky portfolio, and that no money will be invested in the risk-free asset. This borrowed capital is added to the original capital available for investment. In this example the customer will tolerate borrowing 18.69% of the original capital amount.

Constraint Specification

This example computes the efficient frontier of portfolios consisting of three different assets, INTC, XON, and RD, given a list of constraints. The expected returns for INTC, XON, and RD are respectively as follows.

```
ExpReturn = [0.1 0.2 0.15];
```

The covariance matrix is

| ExpCovariance $=$ | $\left.\left[\begin{array}{rrr}0.005 & -0.010 & 0.004 ; \\ -0.010 & 0.040 & -0.002 ; \\ & 0.004 & -0.002\end{array}\right) 0.023\right] ;$ |
| ---: | :--- | ---: | ---: |

Constraint 1. Allow short selling up to 10% of the portfolio value in any asset but limit the investment in any one asset to 110% of the portfolio value.

Constraint 2. Consider two different sectors, technology and energy, with the table below indicating the sector each asset belongs to.

| Asset | INTC | XON | RD |
| :--- | :--- | :--- | :--- |
| Sector | Technology | Energy | Energy |

Constrain the investment in the Energy sector to 80% of the portfolio value, and the investment in the Technology sector to 70%.

To solve this problem, use frontcon, passing in a list of asset constraints. Consider eight different portfolios along the efficient frontier.

```
NumPorts = 8;
```

To introduce the asset bounds constraints specified in Constraint 1, create the matrix AssetBounds, where each column represents an asset. The upper row represents the lower bounds, and the lower row represents the upper bounds.

```
AssetBounds = [-0.10, -0.10, -0.10;
    1.10, 1.10, 1.10];
```

Constraint 2 needs to be entered in two parts, the first part defining the groups, and the second part defining the constraints for each group. Given the information above, you can build a matrix of 1 s and 0 s indicating whether a specific asset belongs to a group. Each column represents an asset, and each
row represents a group. This example has two groups: the technology group, and the energy group. Create the matrix Groups as follows.

$$
\text { Groups } \left.=\begin{array}{rrr}
{[0} & 1 & 1 ; \\
1 & 0 & 0
\end{array}\right] ;
$$

The GroupBounds matrix allows you to specify an upper and lower bound for each group. Each row in this matrix represents a group. The first column represents the minimum allocation, and the second column represents the maximum allocation to each group. Since the investment in the Energy sector is capped at 80% of the portfolio value, and the investment in the Technology sector is capped at 70%, create the GroupBounds matrix using this information.

```
GroupBounds = [ 0 0.80;
    0 0.70];
```

Now use frontcon to obtain the vectors and arrays representing the risk, return, and weights for each of the eight portfolios computed along the efficient frontier.

```
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts, [], AssetBounds, Groups, GroupBounds)
PortRisk =
    0.0416
    0.0499
    0.0624
    0.0767
    0.0920
    0.1100
    0.1378
    0.1716
PortReturn =
    0.1279
    0.1361
    0.1442
    0.1524
    0.1605
    0.1687
```

| 0.1768 | | |
| ---: | ---: | ---: |
| 0.1850 | | |
| PortWts | | |
| | | |
| 0.7000 | 0.2582 | 0.0418 |
| 0.6031 | 0.3244 | 0.0725 |
| 0.4864 | 0.3708 | 0.1428 |
| 0.3696 | 0.4172 | 0.2132 |
| 0.2529 | 0.4636 | 0.2835 |
| 0.2000 | 0.5738 | 0.2262 |
| 0.2000 | 0.7369 | 0.0631 |
| 0.2000 | 0.9000 | -0.1000 |

The output data is represented row-wise, where each portfolio's risk, rate of return, and associated weight is identified as corresponding rows in the vectors and matrix.

Linear Constraint Equations

While frontcon allows you to enter a fixed set of constraints related to minimum and maximum values for groups and individual assets, you often need to specify a larger and more general set of constraints when finding the optimal risky portfolio. The function portopt addresses this need, by accepting an arbitrary set of constraints as an input matrix.

The auxiliary function portcons can be used to create the matrix of constraints, with each row representing an inequality. These inequalities are of the type $A^{*} W t s^{\prime}<=b$, where A is a matrix, b is a vector, and Wts is a row vector of asset allocations. The number of columns of the matrix A, and the length of the vector Wts correspond to the number of assets. The number of rows of the matrix A, and the length of vector b correspond to the number of constraints. This method allows you to specify any number of linear inequalities to the function portopt.

In actuality, portcons is an entry point to a set of functions that generate matrices for specific types of constraints. portcons allows you to specify all the constraints data at once, while the specific portfolio constraint functions allow you to build the constraints incrementally. These constraint functions are pcpval, pcalims, pcglims, and pcgcomp.

Consider an example to help understand how to specify constraints to portopt while bypassing the use of portcons. This example requires specifying the minimum and maximum investment in various groups.

Table 3-1: Maximum and Minimum Group Exposure

| Group | Minimum Exposure | Maximum Exposure |
| :--- | :--- | :--- |
| North America | 0.30 | 0.75 |
| Europe | 0.10 | 0.55 |
| Latin America | 0.20 | 0.50 |
| Asia | 0.50 | 0.50 |

Note that the minimum and maximum exposure in Asia is the same. This means that you require a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The correspondence between funds and groups is shown in Table 3-2.

Table 3-2: Group Membership

| Group | Fund 1 | Fund 2 | Fund 3 |
| :--- | :--- | :--- | :--- |
| North America | X | X | |
| Europe | | | X |
| Latin America | X | | |
| Asia | | X | X |

Using the information in these two tables, build a mathematical representation of the constraints represented. Assume that the vector of weights representing the exposure of each asset in a portfolio is called Wts = [W1 W2 W3].

Specifically

1. $W 1+W 2 \geq 0.30$
2. $W 1+W 2 \leq 0.75$

| 3. | $W 3$ | ≥ 0.10 |
| :--- | :--- | :--- |
| 4. | $W 3$ | ≤ 0.55 |
| 5. | $W 1$ | ≥ 0.20 |
| 6. | $W 1$ | ≤ 0.50 |
| 7. | $W 2+W 3$ | $=0.50$ |

Since you need to represent the information in the form $A * W t s<=b$, multiply equations 1,3 and 5 by -1 . Also turn equation 7 into a set of two inequalities: $W 2+W 3 \geq 0.50$ and $W 2+W 3 \leq 0.50$ (The intersection of these two inequalities is the equality itself.). Thus

1. $-W 1-W 2 \leq-0.30$
2. $W 1+W 2 \leq 0.75$
3. $-W 3 \leq-0.10$
4. $W 3 \leq 0.55$
5. $-W 1 \leq-0.20$
6. $W 1 \leq 0.50$
7. -W2-W3 ≤-0.50
8. $W 2+W 3 \leq 0.50$

Bringing these equations into matrix notation gives
$A=\left[\begin{array}{rrr}-1 & -1 & 0 ; \\ 1 & 1 & 0 ; \\ 0 & 0 & -1 ; \\ 0 & 0 & 1 ; \\ -1 & 0 & 0 ; \\ 1 & 0 & 0 ; \\ 0 & -1 & -1 ; \\ 0 & 1 & 1]\end{array}\right.$

$$
\begin{array}{r}
\text { b = [}-0.30 ; \\
0.75 ; \\
-0.10 ; \\
0.55 ; \\
-0.20 ; \\
0.50 ; \\
-0.50 ; \\
0.50]
\end{array}
$$

Build the constraint matrix ConSet by concatenating the matrix A to the vector b.

```
ConSet = [A, b]
```


Specifying Additional Constraints

The example above defined a constraints matrix that specified a set of typical scenarios. It defined groups of assets, specified upper and lower bounds for total allocation in each of these groups, and it set the total allocation of one of the groups to a fixed value. Constraints like these are common occurrences. The function portcons was created to simplify the creation of the constraint matrix for these and other common portfolio requirements. portcons takes as input arguments a list of constraint-specifier strings, followed by the data necessary to build the constraint specified by the strings.

Assume that you need to add more constraints to the previous example. Specifically, add a constraint indicating that the sum of weights in any portfolio should be equal to 1 , and another set of constraints (one per asset) indicating that the weight for each asset must greater than 0 . This translates into five more constraint rows: two for the new equality, and three indicating that each weight must be greater or equal to 0 . The total number of inequalities
in the example is now 13. Clearly, creating the constraint matrix can turn into a tedious task.

To create the new constraint matrix using portcons, use two separate constraint-specifier strings:

- 'Default', which indicates that each weight is greater than 0 and that the total sum of the weights adds to 1 .
- 'GroupLims ', which defines the minimum and maximum allocation on each group.

The only data requirement for the constraint-specifier string 'Default ' is NumAssets (the total number of assets). The constraint-specifier string 'GroupLims ' requires three different arguments: a Groups matrix indicating the assets that belong to each group, the GroupMin vector indicating the minimum bounds for each group, and the GroupMax vector indicating the maximum bounds for each group. Based on Table 3-2, Group Membership, build the Group matrix, with each row representing a group, and each column representing an asset.

Group = [1 | $[1$ | $0 ;$ | |
| ---: | :--- | :--- |
| 0 | 0 | $1 ;$ |
| 1 | 0 | $0 ;$ |
| 0 | 1 | $1]$ |

Table 3-1, Maximum and Minimum Group Exposure, has the information to build GroupMin and GroupMax.

```
GroupMin = [llllll}0.30\mathrm{ 0.10 0.20 0.50];
GroupMax = [lllll}0.750.55 0.50 0.50];
```

Given that the number of assets is three, build the constraint matrix by calling portcons.

```
ConSet = portcons('Default', 3, 'GroupLims', Group, GroupMin,...
GroupMax);
```

In most cases, portcons('Default') returns the minimal set of constraints required for calling portopt. If ConSet is not specified in the call to portopt, the function calls portcons passing 'Default' as its only specifier.

Now use portopt to obtain the vectors and arrays representing the risk, return, and weights for the portfolios computed along the efficient frontier.

```
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], [], ConSet)
PortRisk = 0.0586
Port Return = 0.1375
PortWts = 0.5 0.25 0.25
```

In this case the constraints allow only one optimum portfolio.

Active Returns and Tracking Error Efficient Frontier

Suppose you wish to identify an efficient set of portfolios that minimize the variance of the difference in returns with respect to a given target portfolio, subject to a given expected excess return. The mean and standard deviation of this excess return are often called the active return and active risk, respectively. Active risk is sometimes referred to as the tracking error. Since the objective is to track a given target portfolio as closely as possible, the resulting set of portfolios is sometimes referred to as the tracking error efficient frontier.

Specifically, assume that the target portfolio is expressed as an index weight vector, such that the index return series may be expressed as a linear combination of the available assets. This example illustrates how to construct a frontier that minimizes the active risk (tracking error) subject to attaining a given level of return. That is, it computes the tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form the target return series and subtract it from the return series of the individual assets. In this manner, you specify the expected mean and covariance of the active returns, and compute the efficient frontier subject to the usual portfolio constraints.

This example works directly with the mean and covariance of the absolute (unadjusted) returns but converts the constraints from the usual absolute weight format to active weight format.

Consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on absolute weekly asset returns.

Convert the correlations and standard deviations to a covariance matrix.

```
ExpCovariance = corr2cov(Sigmas, Correlations);
```

Next, assume that the target index portfolio is simply an equally-weighted portfolio formed from the five assets. Note that the sum of index weights equals 1 , satisfying the standard full investment budget equality constraint.

```
Index = ones(NumAssets, 1)/NumAssets;
```

Generate an asset constraint matrix via portcons. The constraint matrix AbsConSet is expressed in absolute format (unadjusted for the index), and is formatted as [A b], corresponding to constraints of the form A*w <= b. Each row of AbsConSet corresponds to a constraint, and each column corresponds to an asset. Allow no short-selling and full investment in each asset (lower and upper bounds of each asset are 0 and 1 , respectively). In particular, note that the first two rows correspond to the budget equality constraint; the remaining rows correspond to the upper/lower investment bounds.

```
AbsConSet = portcons('PortValue', 1, NumAssets, ...
'AssetLims', zeros(NumAssets,1), ones(NumAssets,1));
```

Now transform the absolute constraints to active constraints with abs2active.

```
ActiveConSet = abs2active(AbsConSet, Index);
```

An examination of the absolute and active constraint matrices reveals that they are differ only in the last column (the columns corresponding to the b in $A^{*} w<=b$).
[AbsConSet(:,end) ActiveConSet(:,end)]

| ans $=$ | |
| :--- | ---: |
| | |
| 1.0000 | 0 |
| -1.0000 | 0 |
| 1.0000 | 0.8000 |
| 1.0000 | 0.8000 |
| 1.0000 | 0.8000 |
| 1.0000 | 0.8000 |
| 1.0000 | 0.8000 |
| 0 | 0.2000 |
| 0 | 0.2000 |

| 0 | 0.2000 |
| :--- | :--- |
| 0 | 0.2000 |
| 0 | 0.2000 |

In particular, note that the sum-to-one absolute budget constraint becomes a sum-to-zero active budget constraint. The general transformation is as follows:

$$
b_{\text {active }}=b_{\text {absolute }}-A \cdot \text { Index }
$$

Now construct and plot the tracking error efficient frontier with 21 portfolios.

```
[ActiveRisk, ActiveReturn, ActiveWeights] = ...
portopt(ExpReturn,ExpCovariance, 21, [], ActiveConSet);
ActiveRisk = real(ActiveRisk);
plot(ActiveRisk*100, ActiveReturn*100, 'blue')
grid('on')
xlabel('Active Risk (Standard Deviation in Percent)')
ylabel('Active Return (Percent)')
title('Tracking Error Efficient Frontier')
```


Of particular interest is the lower left-hand portfolio along the frontier. This zero-risk/zero-return portfolio has a very practical economic significance. It represents a full investment in the index portfolio itself. Note that each tracking error efficient portfolio (each row in the array ActiveWeights) satisfies the active budget constraint, and thus represents portfolio investment allocations with respect to the index portfolio. To convert these allocations to absolute investment allocations, add the index to each efficient portfolio.

```
AbsoluteWeights = ActiveWeights + repmat(Index', 21, 1);
```


Solving Sample Problems

Common Problems in Finance (p. 4-3) Problems involving bond portfolios and equity options.
Producing Graphics with the Toolbox Use of MATLAB graphics to illustrate financial data. (p. 4-19)

This section shows how Financial Toolbox functions solve real-world problems. The examples ship with the toolbox as M-files. Try them by entering the commands directly or by executing the M-files.

This chapter contains two major topics:

- Common Problems in Finance

Shows how the toolbox solves real-world financial problems, specifically:

- "Sensitivity of Bond Prices to Changes in Interest Rates" on page 4-3
- "Constructing a Bond Portfolio to Hedge Against Duration and Convexity" on page 4-6
- "Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve" on page 4-8
- "Constructing Greek-Neutral Portfolios of European Stock Options" on page 4-12
- "Term Structure Analysis and Interest Rate Swap Pricing" on page 4-15
- Producing Graphics with the Toolbox

Shows how the toolbox produces presentation-quality graphics by solving these problems:

- "Plotting an Efficient Frontier" on page 4-19
- "Plotting Sensitivities of an Option" on page 4-21
- "Plotting Sensitivities of a Portfolio of Options" on page 4-23

Common Problems in Finance

Sensitivity of Bond Prices to Changes in Interest Rates

Macaulay and modified duration measure the sensitivity of a bond's price to changes in the level of interest rates. Convexity measures the change in duration for small shifts in the yield curve, and thus measures the second-order price sensitivity of a bond. Both measures can gauge the vulnerability of a bond portfolio's value to changes in the level of interest rates.

Alternatively, analysts can use duration and convexity to construct a bond portfolio that is partly hedged against small shifts in the term structure. If you combine bonds in a portfolio whose duration is zero, the portfolio is insulated, to some extent, against interest rate changes. If the portfolio convexity is also zero, this insulation is even better. However, since hedging costs money or reduces expected return, you need to know how much protection results from hedging duration alone compared with hedging both duration and convexity.

This example demonstrates a way to analyze the relative importance of duration and convexity for a bond portfolio using some of the SIA-compliant bond functions in the Financial Toolbox. Using duration, it constructs a first-order approximation of the change in portfolio price to a level shift in interest rates. Then, using convexity, it calculates a second-order approximation. Finally it compares the two approximations with the true price change resulting from a change in the yield curve. The example M-file is ftspex1.m.

Step 1. Define three bonds using values for the settlement date, maturity date, face value, and coupon rate. For simplicity, accept default values for the coupon payment periodicity (semiannual), end-of-month payment rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (no odd first or last coupon dates). Any inputs for which defaults are accepted are set to empty matrices ([]) as placeholders where appropriate.

```
Settle = '19-Aug-1999';
Maturity = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];
Face = [100; 100; 1000];
CouponRate = [0.07; 0.06; 0.045];
```

Also, specify the yield curve information.

```
Yields = [0.05; 0.06; 0.065];
```

Step 2. Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in years of each bond.

The true price is quoted (clean) price plus accrued interest.

```
[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], [], Face);
Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2,
0,... [], [], [], [], [], Face);
Convexities = bndconvy(Yields, CouponRate, Settle, Maturity,2,
0,... [], [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;
```

Step 3. Choose a hypothetical amount by which to shift the yield curve (here, 0.2 percentage point or 20 basis points).

```
dY = 0.002;
```

Weight the three bonds equally, and calculate the actual quantity of each bond in the portfolio, which has a total value of $\$ 100,000$.

```
PortfolioPrice = 100000;
PortfolioWeights = ones(3,1)/3;
PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices;
```

Step 4. Calculate the modified duration and convexity of the portfolio. Note that the portfolio duration or convextity is a weighted average of the durations or convexities of the individual bonds. Calculate the first- and second-order approximations of the percent price change as a function of the change in the level of interest rates.

```
PortfolioDuration = PortfolioWeights' * Durations;
PortfolioConvexity = PortfolioWeights' * Convexities;
PercentApprox1 = -PortfolioDuration * dY * 100;
PercentApprox2 = PercentApprox1 + ...
```

```
PortfolioConvexity*dY^2*100/2.0;
```

Step 5. Estimate the new portfolio price using the two estimates for the percent price change.

```
PriceApprox1 = PortfolioPrice + ...
PercentApprox1 * PortfolioPrice/100;
PriceApprox2 = PortfolioPrice + ...
PercentApprox2 * PortfolioPrice/100;
```

Step 6. Calculate the true new portfolio price by shifting the yield curve.

```
[CleanPrice, AccruedInterest] = bndprice(Yields + dY,...
CouponRate, Settle, Maturity, 2, O, [], [], [], [], [],...
Face);
NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest);
```

Step 7. Compare the results. The analysis results are as follows (verify these results by running the example M-file ftspex1.m):

- The original portfolio price was $\$ 100,000$.
- The yield curve shifted up by 0.2 percentage point or 20 basis points.
- The portfolio duration and convexity are 10.3181 and 157.6346 , respectively. These will be needed below for "Constructing a Bond Portfolio to Hedge Against Duration and Convexity".
- The first-order approximation, based on modified duration, predicts the new portfolio price (PriceApprox1) will be $\$ 97,936.37$.
- The second-order approximation, based on duration and convexity, predicts the new portfolio price (PriceApprox2) will be $\$ 97,967.90$.
- The true new portfolio price (NewPrice) for this yield curve shift is \$97,967.51.
- The estimate using duration and convexity is quite good (at least for this fairly small shift in the yield curve), but only slightly better than the estimate using duration alone. The importance of convexity increases as the magnitude of the yield curve shift increases. Try a larger shift (dY) to see this effect.

The approximation formulas in this example consider only parallel shifts in the term structure, because both formulas are functions of $d Y$, the change in yield. The formulas are not well-defined unless each yield changes by the same amount. In actual financial markets, changes in yield curve level typically explain a substantial portion of bond price movements. However, other changes in the yield curve, such as slope, may also be important and are not captured here. Also, both formulas give local approximations whose accuracy deteriorates as dY increases in size. You can demonstrate this by running the program with larger values of dY .

Constructing a Bond Portfolio to Hedge Against Duration and Convexity

This example constructs a bond portfolio to hedge the portfolio of "Sensitivity of Bond Prices to Changes in Interest Rates." It assumes a long position in (holding) the portfolio, and that three other bonds are available for hedging. It chooses weights for these three other bonds in a new portfolio so that the duration and convexity of the new portfolio match those of the original portfolio. Taking a short position in the new portfolio, in an amount equal to the value of the first portfolio, partially hedges against parallel shifts in the yield curve.

Recall that portfolio duration or convexity is a weighted average of the durations or convexities of the individual bonds in a portfolio. As in the previous example, this example uses modified duration in years and convexity in years. The hedging problem therefore becomes one of solving a system of linear equations, which is very easy to do in MATLAB. The M-file for this example is ftspex2.m.

Step 1. Define three bonds available for hedging the original portfolio. Specify values for the settlement date, maturity date, face value, and coupon rate. For simplicity, accept default values for the coupon payment periodicity (semiannual), end-of-month payment rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (i.e., no odd first or last coupon dates). Set any inputs for which defaults are accepted to empty matrices ([]) as placeholders where appropriate. The intent is to hedge against duration and convexity as well as constrain total portfolio price.

```
Settle = '19-Aug-1999';
Maturity = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];
```

```
Face = [500; 1000; 250];
CouponRate = [0.07; 0.066; 0.08];
```

Also, specify the yield curve for each bond.

```
Yields = [0.06; 0.07; 0.075];
```

Step 2. Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in years of each bond.

The true price is quoted (clean price plus accrued interest.

```
[CleanPrice, AccruedInterest] = bndprice(Yields,CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], [], Face);
Durations = bnddury(Yields, CouponRate, Settle, Maturity,...
2, 0, [], [], [], [], [], Face);
Convexities = bndconvy(Yields, CouponRate, Settle,...
Maturity, 2, 0, [], [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;
```

Step 3. Set up and solve the system of linear equations whose solution is the weights of the new bonds in a new portfolio with the same duration and convexity as the original portfolio. In addition, scale the weights to sum to 1 ; that is, force them to be portfolio weights. You can then scale this unit portfolio to have the same price as the original portfolio. Recall that the original portfolio duration and convexity are 10.3181 and 157.6346 , respectively. Also, note that the last row of the linear system ensures the sum of the weights is unity.

```
A = [Durations'
    Convexities'
    1 1];
b = [ 10.3181
    157.6346
        1];
Weights = A\b;
```

Step 4. Compute the duration and convexity of the hedge portfolio, which should now match the original portfolio.

```
PortfolioDuration = Weights' * Durations;
PortfolioConvexity = Weights' * Convexities;
```

Step 5. Finally, scale the unit portfolio to match the value of the original portfolio and find the number of bonds required to insulate against small parallel shifts in the yield curve.

```
PortfolioValue = 100000;
HedgeAmounts = Weights ./ Prices * PortfolioValue;
```

Step 6. Compare the results. (Verify the analysis results by running the example M-file ftspex2.m.)

- As required, the duration and convexity of the new portfolio are 10.3181 and 157.6346, respectively.
- The hedge amounts for bonds 1,2 , and 3 are -57.37, 71.70, and 216.27, respectively.

Notice that the hedge matches the duration, convexity, and value ($\$ 100,000$) of the original portfolio. If you are holding that first portfolio, you can hedge by taking a short position in the new portfolio.

Just as the approximations of the first example are appropriate only for small parallel shifts in the yield curve, the hedge portfolio is appropriate only for reducing the impact of small level changes in the term structure.

Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve

Often bond portfolio managers want to consider more than just the sensitivity of a portfolio's price to a small shift in the yield curve, particularly if the investment horizon is long. This example shows how MATLAB can visualize the price behavior of a portfolio of bonds over a wide range of yield curve scenarios, and as time progresses toward maturity.

This example uses the Financial Toolbox bond pricing functions to evaluate the impact of time-to-maturity and yield variation on the price of a bond portfolio. It plots the portfolio value and shows the behavior of bond prices as yield and time vary. This example M-file is ftspex 3 .m.

Step 1. Specify values for the settlement date, maturity date, face value, coupon rate, and coupon payment periodicity of a four-bond portfolio. For simplicity, accept default values for the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (no odd first or last coupon dates). Any inputs for which defaults are accepted are set to empty matrices ([]) as placeholders where appropriate.

```
Settle = '15-Jan-1995';
Maturity = datenum(['03-Apr-2020'; '14-May-2025'; ...
    '09-Jun-2019'; '25-Feb-2019']);
Face = [1000; 1000; 1000; 1000];
CouponRate = [0; 0.05; 0; 0.055];
Periods = [0; 2; 0; 2];
```

Also, specify the points on the yield curve for each bond.

```
Yields = [0.078; 0.09; 0.075; 0.085];
```

Step 2. Use Financial Toolbox functions to calculate the true bond prices as the sum of the quoted price plus accrued interest.

```
[CleanPrice, AccruedInterest] = bndprice(Yields,...
CouponRate,Settle, Maturity, Periods,...
[], [], [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;
```

Step 3. Assume the value of each bond is $\$ 25,000$, and determine the quantity of each bond such that the portfolio value is $\$ 100,000$.

```
BondAmounts = 25000 ./ Prices;
```

Step 4. Compute the portfolio price for a rolling series of settlement dates over a range of yields. The evaluation dates occur annually on January 15, beginning on 15-Jan-1995 (settlement) and extending out to 15-Jan-2018. Thus, this step evaluates portfolio price on a grid of time of progression (dT) and interest rates (dY).

```
dy = -0.05:0.005:0.05; % Yield changes
D = datevec(Settle); % Get date components
dt = datenum(D(1):2018, D(2), D(3)); % Get evaluation dates
```

```
[dT, dY] = meshgrid(dt, dy); % Create grid
NumTimes = length(dt); % Number of time steps
NumYields = length(dy); % Number of yield changes
NumBonds = length(Maturity); % Number of bonds
% Preallocate vector
Prices = zeros(NumTimes*NumYields, NumBonds);
```

Now that the grid and price vectors have been created, compute the price of each bond in the portfolio on the grid one bond at a time.

```
for i = 1:NumBonds
    [CleanPrice, AccruedInterest] = bndprice(Yields(i)+...
    dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...
    [], [], [], [], [], [], Face(i));
    Prices(:,i) = CleanPrice + AccruedInterest;
```

end

Scale the bond prices by the quantity of bonds.

```
Prices = Prices * BondAmounts;
```

Reshape the bond values to conform to the underlying evaluation grid.

```
Prices = reshape(Prices, NumYields, NumTimes);
```

Step 5. Plot the price of the portfolio as a function of settlement date and a range of yields, and as a function of the change in yield (dY). This plot illustrates the interest rate sensitivity of the portfolio as time progresses (dT), under a range of interest rate scenarios. With the following graphics commands, you can visualize the three-dimensional surface relative to the current portfolio value (i.e., $\$ 100,000$).

```
figure % Open a new figure window
surf(dt, dy, Prices) % Draw the surface
```

Add the base portfolio value to the existing surface plot.

```
hold on % Add the current value for reference
```

```
basemesh = mesh(dt, dy, 100000*ones(NumYields, NumTimes));
```

Make it transparent, plot it so the price surface shows through, and draw a box around the plot.

```
set(basemesh, 'facecolor', 'none');
set(basemesh, 'edgecolor', 'm');
set(gca, 'box', 'on');
```

Plot the x-axis using two-digit year (YY format) labels for ticks.
dateaxis('x', 11);
Add axis labels and set the three-dimensional viewpoint. MATLAB produces the figure.

```
xlabel('Evaluation Date (YY Format)');
ylabel('Change in Yield');
zlabel('Portfolio Price');
hold off
view(-25,25);
```


MATLAB three-dimensional graphics allow you to visualize the interest rate risk experienced by a bond portfolio over time. This example assumed parallel shifts in the term structure, but it might similarly have allowed other components to vary, such as the level and slope.

Constructing Greek-Neutral Portfolios of European Stock Options

The option sensitivity measures familiar to most option traders are often referred to as the greeks: delta, gamma, vega, lambda, rho, and theta. Delta is the price sensitivity of an option with respect to changes in the price of the underlying asset. It represents a first-order sensitivity measure analogous to duration in fixed income markets. Gamma is the sensitivity of an option's delta to changes in the price of the underlying asset, and represents a second-order price sensitivity analogous to convexity in fixed income markets. Vega is the price sensitivity of an option with respect to changes in the volatility of the underlying asset. See "Pricing and Analyzing Equity Derivatives" on page 2-33 or the "Glossary" for other definitions.

The greeks of a particular option are a function of the model used to price the option. However, given enough different options to work with, a trader can construct a portfolio with any desired values for its greeks. For example, to insulate the value of an option portfolio from small changes in the price of the underlying asset, one trader might construct an option portfolio whose delta is zero. Such a portfolio is then said to be "delta neutral." Another trader may wish to protect an option portfolio from larger changes in the price of the underlying asset, and so might construct a portfolio whose delta and gamma are both zero. Such a portfolio is both delta and gamma neutral. A third trader may wish to construct a portfolio insulated from small changes in the volatility of the underlying asset in addition to delta and gamma neutrality. Such a portfolio is then delta, gamma, and vega neutral.
Using the Black-Scholes model for European options, this example creates an equity option portfolio that is simultaneously delta, gamma, and vega neutral. The value of a particular greek of an option portfolio is a weighted average of the corresponding greek of each individual option. The weights are the quantity of each option in the portfolio. Hedging an option portfolio thus involves solving a system of linear equations, an easy process in MATLAB. This example M-file is ftspex4.m.

Step 1. Create an input data matrix to summarize the relevant information. Each row of the matrix contains the standard inputs to the Financial Toolbox Black-Scholes suite of functions: column 1 contains the current price of the underlying stock; column 2 the strike price of each option; column 3 the time to-expiry of each option in years; column 4 the annualized stock price volatility; and column 5 the annualized dividend rate of the underlying asset. Note that rows 1 and 3 are data related to call options, while rows 2 and 4 are data related to put options.

| DataMatrix $=[100.000$ | 100 | 0.2 | 0.3 | 0 | \% Call |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- |
| 119.100 | 125 | 0.2 | 0.2 | 0.025 | \% Put |
| 87.200 | 85 | 0.1 | 0.23 | 0 | \% Call |
| 301.125 | 315 | 0.5 | 0.25 | $0.0333]$ | \% Put |

Also, assume the annualized risk-free rate is 10 percent and is constant for all maturities of interest.

```
RiskFreeRate = 0.10;
```

For clarity, assign each column of DataMatrix to a column vector whose name reflects the type of financial data in the column.

```
StockPrice = DataMatrix(:,1);
StrikePrice = DataMatrix(:,2);
ExpiryTime = DataMatrix(:,3);
Volatility = DataMatrix(:,4);
DividendRate = DataMatrix(:,5);
```

Step 2. Based on the Black-Scholes model, compute the prices, as well as the delta, gamma, and vega sensitivity greeks of each of the four options. Note that the functions blsprice and blsdelta have two outputs, while blsgamma and blsvega have only one. The price and delta of a call option differ from the price and delta of an otherwise equivalent put option, in contrast to the gamma and vega sensitivities, which are valid for both calls and puts.

```
[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,...
RiskFreeRate, ExpiryTime, Volatility, DividendRate);
[CallDeltas, PutDeltas] = blsdelta(StockPrice,...
StrikePrice, RiskFreeRate, ExpiryTime, Volatility,...
DividendRate);
Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...
    ExpiryTime, Volatility , DividendRate)';
Vegas = blsvega(StockPrice, StrikePrice, RiskFreeRate,...
    ExpiryTime, Volatility , DividendRate)';
```

Extract the prices and deltas of interest to account for the distinction between call and puts.

```
Prices = [CallPrices(1) PutPrices(2) CallPrices(3)...
PutPrices(4)];
Deltas = [CallDeltas(1) PutDeltas(2) CallDeltas(3)...
PutDeltas(4)];
```

Step 3. Now, assuming an arbitrary portfolio value of $\$ 17,000$, set up and solve the linear system of equations such that the overall option portfolio is simultaneously delta, gamma, and vega-neutral. The solution computes the value of a particular greek of a portfolio of options as a weighted average of the corresponding greek of each individual option in the portfolio. The system of
equations is solved using the backslash (\backslash) operator discussed in "Solving Simultaneous Linear Equations" on page 1-13.

```
A = [Deltas; Gammas; Vegas; Prices];
b = [0; 0; 0; 17000];
OptionQuantities = A\b; % Quantity (number) of each option.
```

Step 4. Finally, compute the market value, delta, gamma, and vega of the overall portfolio as a weighted average of the corresponding parameters of the component options. The weighted average is computed as an inner product of two vectors.

```
PortfolioValue = Prices * OptionQuantities;
PortfolioDelta = Deltas * OptionQuantities;
PortfolioGamma = Gammas * OptionQuantities;
PortfolioVega = Vegas * OptionQuantities;
```

The example ftspex4.m performs these computations and displays the output on the screen.

| Option | Price | Delta | Gamma | Vega | Quantity |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6.3441 | 0.5856 | 0.0290 | 17.4293 | 22332.6131 |
| 2 | 6.6035 | -0.6255 | 0.0353 | 20.0347 | 6864.0731 |
| 3 | 4.2993 | 0.7003 | 0.0548 | 9.5837 | -15654.8657 |
| 4 | 22.7694 | -0.4830 | 0.0074 | 83.5225 | -4510.5153 |

Portfolio Value: \$17000.00
Portfolio Delta: 0.00
Portfolio Gamma: -0.00
Portfolio Vega : 0.00
You can verify that the portfolio value is $\$ 17,000$ and that the option portfolio is indeed delta, gamma, and vega neutral, as desired. Hedges based on these measures are effective only for small changes in the underlying variables.

Term Structure Analysis and Interest Rate Swap Pricing

This example illustrates some of the term-structure analysis functions found in the Financial Toolbox. Specifically, it illustrates how to derive implied zero (spot) and forward curves from the observed market prices of coupon-bearing
bonds. The zero and forward curves implied from the market data are then used to price an interest rate swap agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash flows. One of the cash flows is based on a fixed interest rate held constant throughout the life of the swap. The other cash flow stream is tied to some variable index rate. Pricing a swap at inception amounts to finding the fixed rate of the swap agreement. This fixed rate, appropriately scaled by the notional principle of the swap agreement, determines the periodic sequence of fixed cash flows.
In general, interest rate swaps are priced from the forward curve such that the variable cash flows implied from the series of forward rates and the periodic sequence of fixed-rate cash flows have the same present value. Thus, interest rate swap pricing and term structure analysis are intimately related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates, and market prices for 10 U.S. Treasury Bonds. This data allows us to price a five-year swap with net cash flow payments exchanged every six months. For simplicity, accept default values for the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). To avoid issues of accrued interest, assume that all Treasury Bonds pay semiannual coupons and that settlement occurs on a coupon payment date.

| Settle $=$ | datenum('15-Jan-1999'); | | |
| ---: | :--- | ---: | :--- |
| BondData $=$ | $\left\{' 15-J u l-1999^{\prime}\right.$ | 0.06000 | 99.93 |
| | '15-Jan-2000' | 0.06125 | 99.72 |
| | '15-Jul-2000' | 0.06375 | 99.70 |
| | '15-Jan-2001' | 0.06500 | 99.40 |
| | '15-Jul-2001' | 0.06875 | 99.73 |
| | '15-Jan-2002' | 0.07000 | 99.42 |
| | '15-Jul-2002' | 0.07250 | 99.32 |
| | '15-Jan-2003' | 0.07375 | 98.45 |
| | '15-Jul-2003' | 0.07500 | 97.71 |
| | '15-Jan-2004' | 0.08000 | $98.15\} ;$ |

BondData is an instance of a MATLAB cell array, indicated by the curly braces (\{\}).

Next assign the date stored in the cell array to Maturity, CouponRate, and Prices vectors for further processing.

```
Maturity = datenum(strvcat(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices = [BondData{:,3}]';
Period = 2; % semiannual coupons
```

Step 2. Now that the data has been specified, use the term structure function zbtprice to bootstrap the zero curve implied from the prices of the coupon-bearing bonds. This implied zero curve represents the series of zero-coupon Treasury rates consistent with the prices of the coupon-bearing bonds such that arbitrage opportunities will not exist.

```
ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle);
```

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the periodic, six-month, interest rate is simply doubled to annualize). The first element of ZeroRates is the annualized rate over the next six months, the second element is the annualized rate over the next 12 months, and so on.

Step 3. From the implied zero curve, find the corresponding series of implied forward rates using the term structure function zero2fwd.

```
ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);
```

The forward curve, stored in ForwardRates, is also quoted on a semiannual bond basis. The first element of ForwardRates is the annualized rate applied to the interval between settlement and six months after settlement, the second element is the annualized rate applied to the interval from six months to 12 months after settlement, and so on. This implied forward curve is also consistent with the observed market prices such that arbitrage activities will be unprofitable. Since the first forward rate is also a zero rate, the first element of ZeroRates and ForwardRates are the same.

Step 4. Now that you have derived the zero curve, convert it to a sequence of discount factors with the term structure function zero2disc.

```
DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);
```

Step 5. From the discount factors, compute the present value of the variable cash flows derived from the implied forward rates. For plain interest rate swaps, the notional principle remains constant for each payment date and cancels out of each side of the present value equation. The next line assumes unit notional principle.

```
PresentValue = sum((ForwardRates/Period) .* DiscountFactors);
```

Step 6. Compute the swap's price (the fixed rate) by equating the present value of the fixed cash flows with the present value of the cash flows derived from the implied forward rates. Again, since the notional principle cancels out of each side of the equation, it is simply assumed to be 1 .

```
SwapFixedRate = Period * PresentValue / sum(DiscountFactors);
```

The example ftspex5.m performs these computations and displays the output on the screen.

| Zero Rates | Forward Rates |
| :---: | :---: |
| 0.0614 | 0.0614 |
| 0.0642 | 0.0670 |
| 0.0660 | 0.0695 |
| 0.0684 | 0.0758 |
| 0.0702 | 0.0774 |
| 0.0726 | 0.0846 |
| 0.0754 | 0.0925 |
| 0.0795 | 0.1077 |
| 0.0827 | 0.1089 |
| 0.0868 | 0.1239 |

Swap Price (Fixed Rate) $=0.0845$
All rates are in decimal format. The swap price, 8.45%, would likely be the mid-point between a market-maker's bid/ask quotes.

Producing Graphics with the Toolbox

The Financial Toolbox and MATLAB graphics functions work together to produce presentation quality graphics, as these examples show. The examples ship with the toolbox as M-files. Try them by entering the commands directly or by executing the M-files. For help using MATLAB plotting functions, see "Creating Plots" in the MATLAB documentation.

Plotting an Efficient Frontier

This example plots the efficient frontier of a hypothetical portfolio of three assets. It illustrates how to specify the expected returns, standard deviations, and correlations of a portfolio of assets, how to convert standard deviations and correlations into a covariance matrix, and how to compute and plot the efficient frontier from the returns and covariance matrix. The example also illustrates how to randomly generate a set of portfolio weights, and how to add the random portfolios to an existing plot for comparison with the efficient frontier. The example M-file is ftgex1.m.

First, specify the expected returns, standard deviations, and correlation matrix for a hypothetical portfolio of three assets. Note the symmetry of the correlation matrix.

```
Returns = [0.1 0.15 0.12];
STDs = [0.2 0.25 0.18];
Correlations = [ 1 0.8 0.4
    0.8 1 0.3
    0.4 0.3 1 ];
```

Convert the standard deviations and correlation matrix into a variance-covariance matrix with the Financial Toolbox function corr2cov.

```
Covariances = corr2cov(STDs, Correlations);
```

Evaluate and plot the efficient frontier at 20 points along the frontier, using the function portopt and the expected returns and corresponding covariance matrix. Although rather elaborate constraints can be placed on the assets in a portfolio, for simplicity accept the default constraints and scale the total value of the portfolio to 1 and constrain the weights to be positive (no short-selling).

```
portopt(Returns, Covariances, 20)
```

Now that the efficient frontier is displayed, randomly generate the asset weights for 1000 portfolios starting from the MATLAB initial state.

```
rand('state', 0)
Weights = rand(1000, 3);
```

The previous line of code generates three columns of uniformly distributed random weights, but does not guarantee they sum to 1 . The following code segment normalizes the weights of each portfolio so that the total of the three weights represent a valid portfolio.

```
Total = sum(Weights, 2); % Add the weights
Total = Total(:,ones(3,1)); % Make size-compatible matrix
Weights = Weights./Total; % Normalize so sum = 1
```

Given the 1000 random portfolios just created, compute the expected return and risk of each portfolio associated with the weights.

```
[PortRisk, PortReturn] = portstats(Returns, Covariances, ...
    Weights);
```

Finally, hold the current graph, and plot the returns and risks of each portfolio on top of the existing efficient frontier for comparison. After plotting, annotate the graph with a title and return the graph to default holding status (any subsequent plots will erase the existing data). The efficient frontier appears in blue, while the 1000 random portfolios appear as a set of red dots on or below the frontier.

```
hold on
plot (PortRisk, PortReturn, '.r')
title('Mean-Variance Efficient Frontier and Random Portfolios')
hold off
```


Plotting Sensitivities of an Option

This example creates a three-dimensional plot showing how gamma changes relative to price for a Black-Scholes option. Recall that gamma is the second derivative of the option price relative to the underlying security price. The plot shows a three-dimensional surface whose z-value is the gamma of an option as price (x-axis) and time (y-axis) vary. It adds yet a fourth dimension by showing option delta (the first derivative of option price to security price) as the color of the surface. This example M-file is ftgex2.m.

First set the price range of the options, and set the time range to one year divided into half-months and expressed as fractions of a year.

```
Range = 10:70;
Span = length(Range);
j = 1:0.5:12;
Newj = j(ones(Span,1),:)'/12;
```

For each time period create a vector of prices from 10 to 70 and create a matrix of all ones.

```
JSpan = ones(length(j),1);
NewRange = Range(JSpan,:);
Pad = ones(size(Newj));
```

Call the toolbox gamma and delta sensitivity functions. Exercise price is $\$ 40$, risk-free interest rate is 10%, and volatility is 0.35 for all prices and periods. Gamma is the z-axis, delta is the color.

```
ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
```

Draw the surface as a mesh, add axis labels and a title. The axes range from 10 to 70,1 to 12 , and $-\infty$ to ∞.

```
mesh(Range, j, ZVal, Color);
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
title('Call Option Sensitivity Measures');
axis([[10 70 1 12 -inf inf]);
```

Finally add a box around the whole plot, annotate the colors with a bar, and label the colorbar.

```
set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
```


Plotting Sensitivities of a Portfolio of Options

This example plots gamma as a function of price and time for a portfolio of 10 Black-Scholes options. The plot shows a three-dimensional surface. For each point on the surface, the height (z-value) represents the sum of the gammas for each option in the portfolio weighted by the amount of each option. The x-axis represents changing price, and the y-axis represents time. The plot adds a fourth dimension by showing delta as surface color. This example M-file is ftgex3.m.
First set up the portfolio with arbitrary data. Current prices range from $\$ 20$ to $\$ 90$ for each option. Set corresponding exercise prices for each option.

```
Range = 20:90;
PLen = length(Range);
ExPrice = [75 70 50 55 75 50 40 75 60 35];
```

Set all risk-free interest rates to 10%, and set times to maturity in days. Set all volatilities to 0.35 . Set the number of options of each instrument, and allocate space for matrices.

```
Rate = 0.1*ones(10,1);
Time = [[\begin{array}{lllllllllll}{36}&{36}&{36}&{27}&{18}&{18}&{18}&{9}&{9}&{9}\end{array}];
Sigma = 0.35*ones(10,1);
NumOpt = 1000*[4 4 8 3 5 5.5 2 4.8 3 4.8 2.5];
ZVal = zeros(36, PLen);
Color = zeros(36, PLen);
```

For each instrument, create a matrix (of size Time by PLen) of prices for each period.

```
for i = 1:10
    Pad = ones(Time(i),PLen);
    NewR = Range(ones(Time(i),1),:);
```

Create a vector of time periods 1 to Time; and a matrix of times, one column for each price.

```
T = (1:Time(i))';
NewT = T(:,ones(PLen,1));
```

Call the toolbox gamma and delta sensitivity functions to compute gamma and delta.

```
ZVal(36-Time(i)+1:36,:) = ZVal(36-Time(i)+1:36,:) ...
    + NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...
    Rate(i)*Pad, NewT/36, Sigma(i)*Pad);
Color(36-Time(i)+1:36,:) = Color(36-Time(i)+1:36,:) ...
    + NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...
    Rate(i)*Pad, NewT/36, Sigma(i)*Pad);
```

end

Draw the surface as a mesh, set the viewpoint, and reverse the x-axis because of the viewpoint. The axes range from 20 to 90,0 to 36 , and $-\infty$ to ∞.

```
mesh(Range, 1:36, ZVal, Color);
view(60,60);
set(gca, 'xdir','reverse');
axis([20 90 0 36 -inf inf]);
```

Add a title and axis labels and draw a box around the plot. Annotate the colors with a bar and label the colorbar.

```
title('Call Option Sensitivity Measures');
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
```


4 Solving Sample Problems

Function Reference

Functions - Categorical List (p. 5-2) Toolbox functions listed by category.
Functions - Alphabetical List (p. 5-13) Toolbox functions listed alphabetically.

Functions - Categorical List

This chapter contains detailed descriptions of all the functions in the Financial Toolbox. The categories of functions described are:

- "Handling and Converting Dates"
- "Formatting Currency"
- "Charting Financial Data"
- "Analyzing and Computing Cash Flows"
- "Fixed-Income Securities"
- "Analyzing Portfolios"
- "Pricing and Analyzing Derivatives"
- "GARCH Processes"
- "Obsolete Bond Price and Yield Functions"
- "Obsolete BDT Functions"

Handling and Converting Dates

Note The date functions datenum, datestr, datevec, eomday, now, and weekday now ship with basic MATLAB. They originally shipped only with the Financial Toolbox. Their descriptions remain in this manual for your convenience.

Current Time and Date

| now | Current date and time. |
| :--- | :--- |
| today | Current date. |

Date and Time Components

datefind Indices of date numbers in matrix.
datevec Date components.
day Day of month.
eomdate Last date of month.
eomday Last day of month.
hour Hour of date or time.
lweekdate Date of last occurrence of weekday in month.
minute \quad Minute of date or time.
month Month of date.
months Number of whole months between dates.
nweekdate Date of specific occurrence of weekday in month.
second Second of date or time.
thirdwednesday Third Wednesday of the month.
weekday Day of the week.
year Year of date.
yeardays Number of days in year.

Date Conversion

date2time Time and frequency from dates
datedisp Display date entries.
datenum Create date number.
datestr Create date string.
dec2thirtytwo Decimal quotation to thirty-second.
m2xdate MATLAB serial date number to Excel serial date number.
thirtytwo2dec Thirty-second quotation to decimal.
time2date Dates from time and frequency
$x 2 m$ date \quad Excel serial date number to MATLAB serial date number.

Financial Dates

| busdate | | Next or previous business day. |
| :---: | :---: | :---: |
| datemnth | | Date of day in future or past month. |
| datewrkdy | | Date of future or past workday. |
| days360 | SIA ${ }^{1}$ | Days between dates based on 360-day year. |
| days360e | | Days between dates based on 360-day year (European). |
| days360isda | ISDA 2 | Days between dates based on 360-day year. |
| days360psa | PSA ${ }^{3}$ | Days between dates based on 360-day year. |
| days365 | | Days between dates based on 365-day year. |
| daysact | | Actual number of days between dates. |
| daysadd | | Date away from a starting date for any day-count basis |
| daysdif | | Days between dates for any day-count basis. |
| fbusdate | | First business date of month. |
| holidays | | Holidays and non-trading days. |
| isbusday | | True for dates that are business days. |
| lbusdate | | Last business date of month. |
| wrkdydif | | Number of working days between dates. |
| yearfrac | | Fraction of year between dates. |
| ${ }^{1}$ Securities Industry Association compliant. | | |
| ${ }^{2}$ International Swap Dealer Association. | | |
| ${ }^{3}$ Public Securities Association. | | |

Coupon Bond Dates

accrfrac SIA Fraction of coupon period before settlement.
cfamounts SIA Cash flow and time mapping for bond portfolio.
cfdates SIA Cash flow dates for a fixed-income security with periodic payments.
cfport Portfolio form of cash flow amounts.
cftimes SIA Time factors corresponding to bond cash flow dates.
cpncount SIA Coupon payments remaining until maturity.
cpndaten SIA Next coupon date after settlement date.
cpndatenq SIA Next quasi coupon date for fixed income security.
cpndatep SIA Previous coupon date before settlement date.
cpndatepq SIA Previous quasi coupon date for fixed income security.
cpndaysn SIA Number of days between settlement date and next coupon date.
cpndaysp SIA Number of days between previous coupon date and settlement date.
cpnpersz SIA Number of days in coupon period containing settlement date.

Formatting Currency

cur2frac Decimal currency value to fractional value.
cur2str Bank formatted text.
frac2cur Fractional currency value to decimal value.

Charting Financial Data

The Financial Toolbox provides a set of functions that create several of the most commonly-used types of financial charts. The Financial Time Series Toolbox provides additional charting capabilities. Using time series data as input, the Financial Time Series Toolbox can compute the value of various
financial indicators and plot the results. Complete information may be found in the Financial Time Series documentation.

| bolling | Bollinger band chart. |
| :--- | :--- |
| candle | Candlestick chart. |
| dateaxis | Convert serial-date axis labels to calendar-date axis labels. |
| highlow | High, low, open, close chart. |
| movavg | Leading and lagging moving averages chart. |
| pointfig | Point and figure chart. |

Analyzing and Computing Cash Flows

Annuities

annurate Periodic interest rate of annuity.
annuterm Number of periods to obtain value.

Amortization and Depreciation

| amortize | Amortization. |
| :--- | :--- |
| depfixdb | Fixed declining-balance depreciation. |
| depgendb | General declining-balance depreciation. |
| deprdv | Remaining depreciable value. |
| depsoyd | Sum of years' digits depreciation. |
| depstln | Straight-line depreciation. |

Present Value

pvfix Present value with fixed periodic payments.
pvar Present value of varying cash flow.

Future Value

| fvdisc | Future value of discounted security. |
| :--- | :--- |
| fvfix | Future value with fixed periodic payments. |
| fvvar | Future value of varying cash flow. |

Payment Calculations

payadv Periodic payment given number of advance payments.
payodd Payment of loan or annuity with odd first period.
payper Periodic payment of loan or annuity.
payuni Uniform payment equal to varying cash flow.

Rates of Return

| effrr | Effective rate of return. |
| :--- | :--- |
| irr | Internal rate of return. |
| mirr | Modified internal rate of return. |
| nomrr | Nominal rate of return. |
| taxedrr | After-tax rate of return. |
| xirr | Internal rate of return for nonperiodic cash flow. |

Cash Flow Sensitivities

cfconv Cash flow convexity.
cfdur Cash flow duration and modified duration.

Fixed-Income Securities

Accrued Interest

| acrubond | Accrued interest of security with periodic interest
 payments. |
| :--- | :--- |
| acrudisc | Accrued interest of discount security paying at maturity. |

Prices

bndprice SIA Price a fixed income security from yield to maturity.
prdisc Price of discounted security.
prmat Price with interest at maturity.
prtbill Price of Treasury bill.

Term Structure of Interest Rates

disc2zero Zero curve given a discount curve.
fwd2zero Zero curve given a forward curve.
prbyzero Price bonds in a portfolio by a set of zero curves.
pyld2zero Zero curve given a par yield curve.
tbl2bond Treasury bond parameters given Treasury bill parameters.
tr2bonds Term-structure parameters given Treasury bond parameters.
zbtprice Zero curve bootstrapping from coupon bond data given price.
zbtyield Zero curve bootstrapping from coupon bond data given yield.
zero2disc Discount curve given a zero curve.
zero2fwd Forward curve given a zero curve.
zero2pyld Par yield curve given a zero curve.

Yields

| beytbill | | Bond equivalent yield for Treasury bill. |
| :---: | :---: | :---: |
| bndyield | SIA | Yield to maturity for fixed income security. |
| discrate | | Bank discount rate of a money market security. |
| ylddisc | | Yield of discounted security. |
| yldmat | | Yield of security with interest at maturity. |
| yldtbill | | Yield of Treasury bill. |
| Spreads | | |
| bndspread | SIA | Static spread over spot curve |
| Interest Rate Sensitivities | | |
| bndconvp | SIA | Bond convexity given price. |
| bndconvy | SIA | Bond convexity given yield. |
| bnddurp | SIA | Bond duration given price. |
| bnddury | SIA | Bond duration given yield. |

Analyzing Portfolios

Portfolio Analysis

abs2active
active2abs
corr2cov
cov2corr
ewstats
frontcon Mean-variance efficient frontier.
pcalims coefficient.

Linear inequalities for individual asset allocation.

Convert constraints from absolute format to active format Convert constraints from active format to absolute format Convert standard deviation and correlation to covariance.

Convert covariance to standard deviation and correlation

Expected return and covariance from return time series.

| pcgcomp | Linear inequalities for asset group comparison constraints. |
| :--- | :--- |
| pcglims | Linear inequalities for asset group minimum and maximum
 allocation. |
| pcpval | Linear inequalities for fixing total portfolio value. |
| portalloc | Optimal capital allocation to efficient frontier portfolios. |
| portcons | Portfolio constraints. |
| portopt | Portfolios on constrained efficient frontier. |
| portrand | Randomized portfolio risks, returns, and weights. |
| portstats | Portfolio expected return and risk. |
| portsim | Monte Carlo simulation of correlated asset returns. |
| portvrisk | Portfolio value at risk |
| ret2tick | Convert a return series to a price series |
| tick2ret | Convert a price series to a return series |

Pricing and Analyzing Derivatives

Option Valuation and Sensitivity

| binprice | Binomial put and call pricing. |
| :--- | :--- |
| blkimpv | Implied volatility for futures options from Black's model. |
| blkprice | Black's model for pricing futures options. |
| blsdelta | Black-Scholes sensitivity to underlying price change. |
| blsgamma | Black-Scholes sensitivity to underlying delta change. |
| blsimpv | Black-Scholes implied volatility. |
| blslambda | Black-Scholes elasticity. |
| blsprice | Black-Scholes put and call pricing. |
| blsrho | Black-Scholes sensitivity to interest rate change. |
| blstheta | Black-Scholes sensitivity to time-until-maturity change. |

| blsvega | Black-Scholes sensitivity to underlying price volatility. |
| :--- | :--- |
| opprofit | Option profit. |

GARCH Processes

The Financial Toolbox provides these representative functions to help you familiarize yourself with Generalized Autoregressive Conditional Heteroskedasticity (GARCH) in the MATLAB context. The GARCH Toolbox provides a more comprehensive and integrated computing environment that includes maximum likelihood parameter estimation, volatility forecasting, Monte Carlo simulation, diagnostic and hypothesis testing, graphical analysis, and data manipulation. For information see the GARCH Toolbox User's Guide or the financial products Web page at http://www.mathworks.com/products/finprod/.

Univariate GARCH Processes

| ugarch | GARCH parameter estimation. |
| :--- | :--- |
| ugarchllf | Log-likelihood objective function. |
| ugarchpred | Forecast conditional variance. |
| ugarchsim | Simulate GARCH process. |

Obsolete Bond Price and Yield Functions

The functions listed in this table are obsolete, and their descriptions have been removed from the documentation. They have been replaced with the SIA-compliant functions bndprice and bndyield. For compatibility purposes, the obsolete functions remain in the product. Type help function_name at the MATLAB command line for a description.

Obsolete Functions

prbond Price of security with regular periodic interest payments.
proddf Price with odd first period.
proddfl Price with odd first and last periods and settlement in first period.
proddl Price with odd last period.
yldbond Yield to maturity of bond.
yldoddf Yield of security with odd first period.
yldoddfl Yield of security with odd first and last periods and settlement in first period.
yldoddl Yield of security with odd last period.

Obsolete BDT Functions

The functions bdtbond and bdttrans are obsolete, and their descriptions have been removed from the documentation. These functions have been replaced by BDT functions in the Financial Derivatives Toolbox. For compatibility purposes, the obsolete functions remain in the product. Type help function_name at the MATLAB command line for a description.

Functions - Alphabetical List

This section contains function reference pages listed alphabetically.

abs2active

Purpose Convert constraints from absolute format to active format

```
Syntax ActiveConSet = abs2active(AbsConSet, Index)
```

Arguments

Description

ActiveConSet = abs2active(AbsConSet, Index) transforms a constraint matrix to an equivalent matrix expressed in active weight format (relative to the index). The transformation equation is

$$
A w_{\text {absolute }}=A\left(w_{\text {active }}+w_{\text {index }}\right) \leq b_{\text {absolute }}
$$

Therefore

$$
A w_{\text {active }} \leq b_{\text {absolute }}-A w_{\text {index }}=b_{\text {active }}
$$

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints expressed in absolute weight format. The index portfolio vector contains NASSETS assets.

ActiveConSet is the transformed portfolio linear inequality constraint matrix expressed in active weight format, also of the form [A b] such that $A * w<=b$. The value w represents a vector of active asset weights (relative to the index portfolio) whose elements sum to zero.

See Also
active2abs, pcalims, pcgcomp, pcglims, pcpval, portcons

Purpose Convert constraints from active format to absolute format
Syntax
Arguments

Description
AbsConSet = active2abs(ActiveConSet, Index)

ActiveConSet Portfolio linear inequality constraint matrix expressed in active weight format. ActiveConSet is formatted as [A b] such that $A^{\star} W<=b$, where A is a number of constraints (NCONSTRAINTS) by number of assets (NASSETS) weight coefficient matrix, and b and w are column vectors of length NASSETS. The value w represents a vector of active asset weights (relative to the index portfolio) whose elements sum to 0 .

See the output ConSet from portcons for additional details about constraint matrices.

Index NASSETS-by-1 vector of index portfolio weights. The sum of the index weights must equal the total portfolio value (e.g., a standard portfolio optimization imposes a sum-to-one budget constraint).

AbsConSet = active2abs(ActiveConSet, Index) transforms a constraint matrix to an equivalent matrix expressed in absolute weight format. The transformation equation is

$$
A w_{\text {active }}=A\left(w_{\text {absolute }}-w_{\text {index }}\right) \leq b_{\text {active }}
$$

Therefore

$$
A w_{\text {absolute }} \leq b_{\text {active }}+A w_{\text {index }}=b_{\text {absolute }}
$$

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints expressed in active weight format (relative to the index portfolio). The index portfolio vector contains NASSETS assets.

AbsConSet is the transformed portfolio linear inequality constraint matrix expressed in absolute weight format, also of the form [A b] such that $A * w<=b$. The value w represents a vector of active asset weights (relative to the index portfolio) whose elements sum to the total portfolio value.

See Also
abs2active, pcalims, pcgcomp, pcglims, pcpval, portcons

accrfrac

| Purpose | Fraction of coupon period before settlement (SIA compliant) | |
| :---: | :---: | :---: |
| Syntax | Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) | |
| Arguments | Settle | Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. |
| | Maturity | Maturity date. A vector of serial date numbers or date strings. |
| | Period | (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12. |
| | Basis | (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),
 $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,
 $5=30 / 360$ (ISDA), $6=30 / 360$ (European),
 7 = actual/365 (Japanese). |
| | EndMonthRule | (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. |
| | IssueDate | (Optional) Date when a bond was issued. |
| | FirstCouponDate | (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. |

| LastCouponDate | (Optional) Last coupon date of a bond prior to the
 maturity date. In the absence of a specified
 FirstCouponDate, a specified LastCouponDate
 determines the coupon structure of the bond. The coupon
 structure of a bond is truncated at the LastCouponDate
 regardless of where it falls and will be followed only by |
| :--- | :--- |
| the bond's maturity cash flow date. | |
| StartDate | (Future implementation; optional) Date when a bond
 actually starts (the date from which a bond's cash flows
 can be considered). To make an instrument
 forward-starting, specify this date as a future date. If
 StartDate is not explicitly specified, the effective start
 date is the settlement date. |

Vector arguments must have consistent dimensions, or they must be scalars.

Description

Examples

Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns the fraction of the coupon period before settlement. This function is used for computing accrued interest.

Given data for three bonds

```
Settle = '14-Mar-1997';
Maturity = ['30-Nov-2000'
    '31-Dec-2000'
    '31-Jan-2001'];
Period = 2;
Basis = 0;
EndMonthRule = 1;
```

Execute the function.
Fraction = accrfrac(Settle, Maturity, Period, Basis,... EndMonthRule)
Fraction =
0.5714
0.4033
0.2320

accrfrac

See Also

cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

Purpose
Syntax

Arguments

Description

Accrued interest of security with periodic interest payments
AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face, CouponRate, Period, Basis)

| IssueDate | Enter as serial date number or date string. |
| :--- | :--- |
| Settle | Enter as serial date number or date string. |

FirstCouponDate Enter as serial date number or date string.
Face Redemption (par, face) value.
CouponRate Enter as decimal fraction.
Period (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.

Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face, CouponRate, Period, Basis) returns the accrued interest for a security with periodic interest payments. This function computes the accrued interest for securities with standard, short, and long first coupon periods.

Note cfamounts or accrfrac is recommended when calculating accrued interest beyond the first period.

```
AccruInterest = acrubond('31-jan-1983', '1-mar-1993',...
    '31-jul-1983', 100, 0.1, 2, 0)
AccruInterest =
    0.8011
```


See Also

accrfrac, acrudisc, bndprice, bndyield, cfamounts, datenum

Purpose
Accrued interest of discount security paying at maturity

| Syntax | ```AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period, Basis)``` |
| :---: | :---: |
| Arguments | Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity. |
| | Maturity Enter as serial date number or date string. |
| | Face Redemption (par, face) value. |
| | Discount Discount rate of the security. Enter as decimal fraction. |
| | Period (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12 . |
| | |
| Description | AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period, Basis) returns the accrued interest of a discount security paid at maturity. |
| Examples | $\begin{aligned} \text { AccruInterest }= & \text { acrudisc('05/01/1992', '07/15/1992', } \ldots \\ & 100,0.1,2,0) \end{aligned}$ |
| | $\text { AccruInterest }=2.0604 \text { (or } \$ 2.06 \text {) }$ |
| See Also | acrubond, prdisc, prmat, ylddisc, yldmat |
| References | Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula D. |

Arguments

Description

Examples

See Also
References

AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period, Basis) returns the accrued interest of a discount security paid at maturity.

```
AccruInterest = acrudisc('05/01/1992', '07/15/1992',...
                        100, 0.1, 2, 0)
                        2.0604 (or $2.06)
```

 Formula D.

Purpose Amortization schedule

Syntax [Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods, PresentValue, FutureValue, Due)

Arguments

Description

Rate Interest rate per period, as a decimal fraction.
NumPeriods Number of payment periods.
PresentValue Present value of the loan.
FutureValue (Optional) Future value of the loan. Default $=0$.
Due (Optional) When payments are due: $0=$ end of period (default), or $1=$ beginning of period.
[Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods, PresentValue, FutureValue, Due) returns the principal and interest payments of a loan, the remaining balance of the original loan amount, and the periodic payment.

Principal Principal paid in each period. A 1-by-NumPeriods vector.
Interest Interest paid in each period. A 1-by-NumPeriods vector.
Balance Remaining balance of the loan in each payment period. A 1-by-NumPeriods vector.

Payment Payment per period. A scalar.

Compute an amortization schedule for a conventional 30-year, fixed-rate mortgage with fixed monthly payments. Assume a fixed rate of 12% APR and an initial loan amount of $\$ 100,000$.

```
Rate = 0.12/12; % 12 percent APR = 1 percent per month
NumPeriods = 30*12; % 30 years = 360 months
PresentValue = 100000;
[Principal, Interest, Balance, Payment] = amortize(Rate,
NumPeriods, PresentValue);
```

The output argument Payment contains the fixed monthly payment.
format bank
Payment
Payment =
1028.61

Finally, summarize the amortization schedule graphically by plotting the current outstanding loan balance, the cumulative principal, and the interest payments over the life of the mortgage. In particular, note that total interest paid over the life of the mortgage exceeds $\$ 270,000$, far in excess of the original loan amount!

```
plot(Balance,'b'), hold('on')
plot(cumsum(Principal),'--k')
plot(cumsum(Interest),':r')
xlabel('Payment Month')
ylabel('Dollars')
grid('on')
title('Outstanding Balance, Cumulative Principal & Interest')
legend('Outstanding Balance', 'Cumulative Principal', ...
'Cumulative Interest', 'TL')
```


amortize

The solid blue line represents the declining principal over the 30 -year period. The dotted red line indicates the increasing cumulative interest payments. Finally, the dashed black line represents the cumulative principal payments, reaching $\$ 100,000$ after 30 years.

See Also
annurate, annuterm, payadv, payodd, payper

Purpose
Syntax Rate $=$ annurate (NumPeriods, Payment, PresentValue, FutureValue, Due)
Arguments

Description

Examples

Periodic interest rate of annuity

NumPeriods Number of payment periods.
Payment Payment per period.
PresentValue Present value of the loan or annuity.
FutureValue (Optional) Future value of the loan or annuity. Default $=0$.
Due (Optional) When payments are due: $0=$ end of period (default), or $1=$ beginning of period.

Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, Due) returns the periodic interest rate paid on a loan or annuity.

Find the periodic interest rate of a four-year, $\$ 5000$ loan with a $\$ 130$ monthly payment made at the end of each month.

```
Rate = annurate(4*12, 130, 5000, 0, 0)
Rate =
    0.0094
```

(Rate multiplied by 12 gives an annual interest rate of 11.32% on the loan.)
See Also amortize, annuterm, bndyield, irr
Purpose Number of periods to obtain value

| Syntax | NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue, Due) | |
| :--- | :--- | :--- |
| Arguments | Rate | Interest rate per period, as a decimal fraction. |
| | Payment | Payment per period. |
| PresentValue | Present value. | |
| FutureValue | (Optional) Future value. Default $=0$.
 Due | (Optional) When payments are due: $0=$ end of period
 (default), or $1=$ beginning of period. |

Description NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue, Due) calculates the number of periods needed to obtain a future value. To calculate the number of periods needed to pay off a loan, enter the payment or the present value as a negative value.

Examples
A savings account has a starting balance of \$1500. \$200 is added at the end of each month and the account pays 9% interest, compounded monthly. How many years will it take to save $\$ 5,000$?

```
NumPeriods = annuterm(0.09/12, 200, 1500, 5000, 0)
NumPeriods =
```

15.68 months or 1.31 years.

See Also annurate, amortize, fvfix, pvfix

Purpose
Bond equivalent yield for Treasury bill

```
Syntax Yield = beytbill(Settle, Maturity, Discount)
```

Arguments Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.
Discount Discount rate of the Treasury bill. Enter as decimal fraction.
Description
Yield = beytbill(Settle, Maturity, Discount) returns the bond equivalent yield for a Treasury bill.

Examples

The settlement date of a Treasury bill is February 11, 2000, the maturity date is August 7, 2000, and the discount rate is 5.77%. The bond equivalent yield is

```
Yield = beytbill('2/11/2000', '8/7/2000', 0.0577)
Yield =
    0.0602
```

See Also
datenum, prtbill, yldtbill

binprice

| Purpose | Binomial put and call pricing |
| :---: | :---: |
| Syntax | [AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time, Increment, Volatility, Flag, DividendRate, Dividend, ExDiv) |
| Arguments | Price Underlying asset price. A scalar. |
| | Strike Option exercise price. A scalar. |
| | Rate Risk-free interest rate. A scalar. Enter as a decimal fraction. |
| | Time Option's time until maturity in years. A scalar. |
| | Increment Time increment. A scalar. Increment is adjusted so that the length of each interval is consistent with the maturity time of the option. (Increment is adjusted so that Time divided by Increment equals an integer number of increments.) |
| | Volatility Asset's volatility. A scalar. |
| | Flag Specifies whether the option is a call (Flag = 1) or a put (Flag = 0). A scalar. |
| | DividendRate (Optional) The dividend rate, as a decimal fraction. A scalar. Default $=0$. If you enter a value for DividendRate, set Dividend and ExDiv $=0$ or do not enter them. If you enter values for Dividend and ExDiv, set DividendRate $=0$. |
| | Dividend (Optional) The dividend payment at an ex-dividend date, ExDiv. A row vector. For each dividend payment, there must be a corresponding ex-dividend date. Default $=0$. If you enter values for Dividend and ExDiv, set DividendRate $=0$. |
| | $\begin{array}{ll}\text { ExDiv } & \text { (Optional) Ex-dividend date, specified in number of periods. A } \\ \text { row vector. Default }=0 .\end{array}$ |
| Description | [AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time, Increment, Volatility, Flag, DividendRate, Dividend, ExDiv) prices an option using the Cox-Ross-Rubinstein binomial pricing model. |

Examples

See Also

References

For a put option, the asset price is $\$ 52$, option exercise price is $\$ 50$, risk-free interest rate is 10%, option matures in 5 months, volatility is 40%, and there is one dividend payment of $\$ 2.06$ in 3-1/2 months.

```
[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0,...
2.06, 3.5)
```

returns the asset price and option value at each node of the binary tree.

| Price $=$ | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 52.0000 | 58.1367 | 65.0226 | 72.7494 | 79.3515 | 89.0642 |
| 0 | 46.5642 | 52.0336 | 58.1706 | 62.9882 | 70.6980 |
| 0 | 0 | 41.7231 | 46.5981 | 49.9992 | 56.1192 |
| 0 | 0 | 0 | 37.4120 | 39.6887 | 44.5467 |
| 0 | 0 | 0 | 0 | 31.5044 | 35.3606 |
| 0 | 0 | 0 | 0 | 0 | 28.0688 |

| 4.4404 | 2.1627 | 0.6361 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 6.8611 | 3.7715 | 1.3018 | 0 | 0 |
| 0 | 0 | 10.1591 | 6.3785 | 2.6645 | 0 |
| 0 | 0 | 0 | 14.2245 | 10.3113 | 5.4533 |
| 0 | 0 | 0 | 0 | 18.4956 | 14.6394 |
| 0 | 0 | 0 | 0 | 0 | 21.9312 |

blkprice, blsprice
Cox, J.; S. Ross; and M. Rubenstein, "Option Pricing: A Simplified Approach", Journal of Financial Economics 7, Sept. 1979, pp. 229-263

Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter 14.

blkimpv

Purpose
Syntax

Arguments

Description

Implied volatility for futures options from Black's model

```
Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, ...
    Tolerance, Class)
```

Price Current price of the underlying asset (a futures contract). Strike Exercise price of the futures option.

Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time Time to expiration of the option, expressed in years.
Value Price of a European futures option from which the implied volatility of the underlying asset is derived.
Limit (Optional) Positive scalar representing the upper bound of the implied volatility search interval. If Limit is empty or unspecified, the default $=10$, or 1000% per annum.

Tolerance (Optional) Implied volatility termination tolerance. A positive scalar. Default $=1 \mathrm{e}-6$.

Class (Optional) Option class (call or put) indicating the option type from which the implied volatility is derived. May be either a logical indicator or a cell array of characters. To specify call options, set Class = true or Class = \{'call'\}; to specify put options, set Class = false or Class = \{'put'\}. If Class is empty or unspecified, the default is a call option.

Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice, MaxIterations, Tolerance) using Black's model computes the implied volatility of a futures price from the market value of European futures options.

Volatility is the implied volatility of the underlying asset derived from European futures option prices, expressed as a decimal number. If no solution is found, blkimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to compute the implied volatility of all the options. If
more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate and Time must be expressed in consistent units of time.

Examples

See Also
References

Consider a European call futures option that expires in four months, trading at $\$ 1.1166$, with an exercise price of $\$ 20$. Assume that the current underlying futures price is also $\$ 20$ and that the risk-free rate is 9% per annum. Furthermore, assume that you are interested in implied volatilities no greater than 0.5 (50% per annum). Under these conditions, the following commands all return an implied volatility of 0.25 , or 25% per annum.

```
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5)
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5,[], {'Call'})
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], true)
```

blkprice, blsimpv, blsprice
Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003, pp. 287-288.

Black, Fischer, "The Pricing of Commodity Contracts," Journal of Financial Economics, March 3, 1976, pp. 167-79.

blkprice

| Purpose | Black's model for pricing futures options |
| :---: | :---: |
| Syntax | [Call, Put] = blkprice(Price, Strike, Rate, Time, Volatility) |
| Arguments | Price Current price of the underlying asset (a futures contract). |
| | Strike Strike or exercise price of the futures option. |
| | Rate
 Annualized, continuously compounded, risk-free rate of return over the life of the option, expressed as a positive decimal number. |
| | $\begin{array}{ll}\text { Time } & \text { Time until expiration of the option, expressed in years. Must } \\ \text { be greater than } 0 .\end{array}$ |
| | Volatility Annualized futures price volatility, expressed as a positive decimal number. |
| Description | [Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time, Volatility) uses Black's model to compute European put and call futures option prices. |
| | Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to compute the implied volatility from all options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical. |
| | Rate, Time, and Volatility must be expressed in consistent units of time. |
| Examples | Consider European futures options with exercise prices of $\$ 20$ that expire in four months. Assume that the current underlying futures price is also $\$ 20$ with a volatility of 25% per annum. The risk-free rate is 9% per annum. Using this data |
| | [Call, Put] = blkprice(20, 20, 0.09, 4/12, 0.25) |
| | returns equal call and put prices of $\$ 1.1166$. |
| See Also | binprice, blsprice |
| References | Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003, pp. 287-288. |

Black, Fischer, "The Pricing of Commodity Contracts," Journal of Financial Economics, March 3, 1976, pp. 167-179.

blsdelta

Purpose Black-Scholes sensitivity to underlying price change

```
Syntax
```

Arguments

Description

Examples
[CallDelta, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)
CallDelta =
0.5955

PutDelta =
-0.4045

See Also
 blsgamma, blslambda, blsprice, blsrho, blstheta, blsvega

References
Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

blsgamma

| Purpose | Black-Scholes sensitivity to underlying delta change |
| :---: | :---: |
| Syntax | Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield) |
| Arguments | Price \quad Current price of the underlying asset. |
| | Strike Exercise price of the option. |
| | Rate Annualized, continuously compounded risk-free rate of return
 over the life of the option, expressed as a positive decimal
 number. |
| | Time Time to expiration of the option, expressed in years. |
| | Volatility
 Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number. |
| | Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default $=0$.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate. |
| Description | Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield) returns gamma, the sensitivity of delta to change in the underlying asset price. |
| Examples | Gamma $=\operatorname{blsgamma}(50,50,0.12,0.25,0.3,0)$ |
| | $\begin{aligned} & \text { Gamma }= \\ & 0.0512 \end{aligned}$ |
| See Also | blsdelta, blslambda, blsprice, blsrho, blstheta, blsvega |
| References | Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003. |

Purpose

| Syntax | Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, ... Yield, Tolerance, Class) | |
| :---: | :---: | :---: |
| Arguments | Price | Current price of the underlying asset. |
| | Strike | Exercise price of the option. |
| | Rate | Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number. |
| | Time | Time to expiration of the option, expressed in years. |
| | Value | Price of a European option from which the implied volatility of the underlying asset is derived. |
| | Limit | (Optional) Positive scalar representing the upper bound of the implied volatility search interval. If Limit is empty or unspecified, the default $=10$, or 1000% per annum. |
| | Yield | (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate. |
| | Tolerance | (Optional) Implied volatility termination tolerance. A positive scalar. Default $=1 \mathrm{e}-6$. |
| | Class | (Optional) Option class (call or put) indicating the option type from which the implied volatility is derived. May be either a logical indicator or a cell array of characters. To specify call options, set Class = true or Class = \{'call'\}; to specify put options, set Class = false or Class $=$ \{'put' $\}$. If Class is empty or unspecified, the default is a call option. |

Time Time to expiration of the option, expressed in years.
Value Price of a European option from which the implied volatility of the underlying asset is derived.

Limit (Optional) Positive scalar representing the upper bound of the implied volatility search interval. If Limit is empty or unspecified, the default $=10$, or 1000% per annum.

Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default =0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.

Tolerance (Optional) Implied volatility termination tolerance. A positive scalar. Default $=1 \mathrm{e}-6$.

Class (Optional) Option class (call or put) indicating the option type from which the implied volatility is derived. May be either a logical indicator or a cell array of characters. To specify call options, set Class = true or Class = \{'call'\}; to specify put options, set Class = false or Class = \{'put'\}. If Class is empty or unspecified, the default is a call option.

blsimpv

Description

Examples

See Also

References

Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, Yield, Tolerance, Class) using a Black-Scholes model computes the implied volatility of an underlying asset from the market value of European call and put options.

Volatility is the implied volatility of the underlying asset derived from European option prices, expressed as a decimal number. If no solution is found, blsimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to price all the options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate, Time, and Yield must be expressed in consistent units of time.
Consider a European call option trading at $\$ 10$ with an exercise price of $\$ 95$ and three months until expiration. Assume that the underlying stock pays no dividend and trades at $\$ 100$. The risk-free rate is 7.5% per annum.
Furthermore, assume that you are interested in implied volatilities no greater than 0.5 (50% per annum).

Under these conditions, the following statements all compute an implied volatility of 0.3130 , or 31.30% per annum.

```
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5)
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], {'Call'})
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], true)
```

blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta
Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

Luenberger, David G., Investment Science, Oxford University Press, 1998.

Purpose

Arguments

Description

Examples

Black-Scholes elasticity

```
Syntax [CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility, Yield)
[CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility,
    Yield)
```

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default =0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
[CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility, yield) returns the elasticity of an option. CallEl is the call option elasticity or leverage factor, and PutEl is the put option elasticity or leverage factor. Elasticity (the leverage of an option position) measures the percent change in an option price per one percent change in the underlying asset price.

```
[CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)
CallEl =
    8.1274
PutEl =
    -8.6466
```


blslambda

See Also
blsdelta, blsgamma, blsprice, blsrho, blstheta, blsvega
References Daigler, Advanced Options Trading, Chapter 4.

Purpose

Syntax

Arguments

Description

Examples

Black-Scholes put and call option pricing
[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)
Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.
Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default $=0$.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield) computes European put and call option prices using a Black-Scholes model.

Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to price all the options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate, Time, Volatility, and Yield must be expressed in consistent units of time.

Consider European stock options that expire in three months with an exercise price of $\$ 95$. Assume that the underlying stock pays no dividend, trades at $\$ 100$, and has a volatility of 50% per annum. The risk-free rate is 10% per annum. Using this data

[^0]
blsprice

returns call and put prices of $\$ 13.70$ and $\$ 6.35$, respectively.
See Also $\begin{aligned} & \text { blkprice, blsdelta, blsgamma, blsimpv, blslambda, blsrho, blstheta, } \\ & \text { blsvega }\end{aligned}$
References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

Luenberger, David G., Investment Science, Oxford University Press, 1998.

Purpose

Arguments

Description

Examples

Black-Scholes sensitivity to interest rate change

```
Syntax [CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility, Yield)
[CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility,
    Yield)
```

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default $=0$.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
[CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility, Yield) returns the call option rho CallRho, and the put option rho PutRho. Rho is the rate of change in value of derivative securities with respect to interest rates.

```
[CallRho, PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)
CallRho =
    6.6686
PutRho =
    -5.4619
```


blsrho

See Also
References
blsdelta, blsgamma, blslambda, blsprice, blstheta, blsvega
Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

Purpose
Syntax

Arguments

Description

Examples

Black-Scholes sensitivity to time-until-maturity change

```
[CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time,
    Volatility, Yield)
```

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time Time to expiration of the option, expressed in years.
Volatility Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default =0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
[CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time, Volatility, Yield) returns the call option theta CallTheta, and the put option theta PutTheta. Theta is the sensitivity in option value with respect to time.

```
[CallTheta, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)
CallTheta =
    -8.9630
PutTheta =
    -3.1404
```


blstheta

See Also

References
blsdelta, blsgamma, blslambda, blsprice, blsrho, blsvega
Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

Purpose

blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta
Black-Scholes sensitivity to underlying price volatility

Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield)

Price Current price of the underlying asset.
Strike Exercise price of the option.
Rate Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.

Time to expiration of the option, expressed in years.
Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
Yield (Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default $=0$.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.

Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield) returns vega, the rate of change of the option value with respect to the volatility of the underlying asset.

```
    Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)
        9.6035
```

Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003.

See Also
References

| Purpose | Bond convexity given price (SIA compliant) | |
| :---: | :---: | :---: |
| Syntax | [YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) | |
| Arguments | Price | Clean price (excludes accrued interest). |
| | CouponRate | Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond. |
| | Settle | Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. |
| | Maturity | Maturity date. A vector of serial date numbers or date strings. |
| | Period | (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12. |
| | Basis | (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),
 $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$,
 $5=30 / 360$ (ISDA), $6=30 / 360$ (European),
 7 = actual/365 (Japanese). |
| | EndMonthRule | (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. |
| | IssueDate | (Optional) Date when a bond was issued. |
| | FirstCouponDate | (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. |

| LastCouponDate | (Optional) Last coupon date of a bond prior to the
 maturity date. In the absence of a specified
 FirstCouponDate, a specified LastCouponDate
 determines the coupon structure of the bond. The coupon
 structure of a bond is truncated at the LastCouponDate
 regardless of where it falls and will be followed only by
 the bond's maturity cash flow date. |
| :--- | :--- |
| StartDate | (Future implementation; optional) Date when a bond
 actually starts (the date from which a bond's cash flows
 can be considered). To make an instrument
 forward-starting, specify this date as a future date. If
 StartDate is not explicitly specified, the effective start
 date is the settlement date. |
| Face | (Optional) Face or par value. Default $=100$. |

All specified arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill unspecified entries in input vectors with NaN. Dates can be serial date numbers or date strings.

Description

[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the convexity of NUMBONDS fixed income securities given a clean price for each bond. This function determines the convexity for a bond whether or not the first or last coupon periods in the coupon structure are short or long (i.e., whether or not the coupon structure is synchronized to maturity). This function also determines the convexity of a zero coupon bond.

YearConvexity is the yearly (annualized) convexity; PerConvexity is the periodic convexity reported on a semiannual bond basis (in accordance with SIA convention). Both outputs are NUMBONDS-by-1 vectors.

bndconvp

Examples

Find the convexity of three bonds given their prices.

```
Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
[YearConvexity, PerConvexity] = bndconvp(Price,...
CouponRate,Settle, Maturity, Period, Basis)
YearConvexity =
    21.4447
    21.0363
    20.8951
PerConvexity =
    85.7788
    84.1454
    83.5803
```

See Also
bndconvy, bnddurp, bnddury, cfconv, cfdur

Purpose
Bond convexity given yield (SIA compliant)

Syntax

Arguments

> [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

| Yield | Yield to maturity on a semiannual basis. |
| :--- | :--- |
| CouponRate | Decimal number indicating the annual percentage rate
 used to determine the coupons payable on a bond. |
| Settle | Settlement date. A vector of serial date numbers or date
 strings. Settle must be earlier than or equal to
 Maturity. |
| Maturity | Maturity date. A vector of serial date numbers or date
 strings. |
| Period | (Optional) Coupons per year of the bond. A vector of
 integers. Allowed values are $0,1,2$ (default), $3,4,6$, and |
| | 12. |

Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate
FirstCouponDate (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

bndconvy

| LastCouponDate | (Optional) Last coupon date of a bond prior to the
 maturity date. In the absence of a specified
 FirstCouponDate, a specified LastCouponDate
 determines the coupon structure of the bond. The coupon
 structure of a bond is truncated at the LastCouponDate
 regardless of where it falls and will be followed only by
 the bond's maturity cash flow date.
 (Future implementation; optional) Date when a bond
 actually starts (the date from which a bond's cash flows
 can be considered). To make an instrument
 forward-starting, specify this date as a future date. If
 StartDate is not explicitly specified, the effective start
 date is the settlement date. |
| :--- | :--- |
| Face | (Optional) Face or par value. Default = 100. |

All specified arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill unspecified entries in input vectors with NaN. Dates can be serial date numbers or date strings.

[^1]
Examples

Find the convexity of a bond at three different yield values.

```
Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,...
Settle, Maturity, Period, Basis)
YearConvexity =
    21.4825
    21.0358
    20.8885
PerConvexity =
    85.9298
    84.1434
    83.5541
```

bndconvp, bnddurp, bnddury, cfconv, cfdur

| Purpose | Bond duration given price (SIA compliant) | |
| :---: | :---: | :---: |
| Syntax | [ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) | |
| Arguments | Price | Clean price (excludes accrued interest). |
| | CouponRate | Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond. |
| | Settle | Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. |
| | Maturity | Maturity date. A vector of serial date numbers or date strings. |
| | Period | (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12. |
| | Basis | (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),
 $2=$ actual $/ 360,3=$ actual $/ 365,4=30 / 360(\mathrm{PSA})$,
 $5=30 / 360$ (ISDA), $6=30 / 360$ (European),
 7 = actual/365 (Japanese). |
| | EndMonthRule | (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. |
| | IssueDate | (Optional) Date when a bond was issued. |
| | FirstCouponDate | (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. |

| LastCouponDate | (Optional) Last coupon date of a bond prior to the
 maturity date. In the absence of a specified
 FirstCouponDate, a specified LastCouponDate
 determines the coupon structure of the bond. The coupon
 structure of a bond is truncated at the LastCouponDate
 regardless of where it falls and will be followed only by
 the bond's maturity cash flow date.
 (Future implementation; optional) Date when a bond
 actually starts (the date from which a bond's cash flows
 can be considered). To make an instrument
 forward-starting, specify this date as a future date. If
 StartDate is not explicitly specified, the effective start
 date is the settlement date. |
| :--- | :--- |
| Face | (Optional) Face or par value. Default = 100. |

All specified arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill unspecified entries in input vectors with NaN. Dates can be serial date numbers or date strings.

Description

[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the duration of NUMBONDS fixed income securities given a clean price for each bond. This function determines the Macaulay and modified duration for a bond whether or not the first or last coupon periods in the coupon structure are short or long (i.e., whether or not the coupon structure is synchronized to maturity). This function also determines the Macaulay and modified duration for a zero coupon bond.

ModDuration is the modified duration in years; YearDuration is the Macaulay duration in years; PerDuration is the periodic Macaulay duration reported on a semiannual bond basis (in accordance with SIA convention.) Outputs are NUMBONDS-by-1 vectors.

bnddurp

Examples

Find the duration of three bonds given their prices.

```
Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...
CouponRate, Settle, Maturity, Period, Basis)
ModDuration =
    4.2400
    4.1925
    4.1759
    YearDuration =
        4.3275
        4.3077
        4.3007
        PerDuration =
        8.6549
        8.6154
        8.6014
```

See Also
bndconvp, bndconvy, bnddury

Purpose
Bond duration given yield (SIA compliant)

Syntax

Arguments

> [ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

| Yield | Yield to maturity on a semiannual basis. |
| :--- | :--- |
| CouponRate | Decimal number indicating the annual percentage rate
 used to determine the coupons payable on a bond. |
| Settle | Settlement date. A vector of serial date numbers or date
 strings. Settle must be earlier than or equal to
 Maturity. |
| Maturity | Maturity date. A vector of serial date numbers or date
 strings. |
| Period | (Optional) Coupons per year of the bond. A vector of
 integers. Allowed values are $0,1,2$ (default), $3,4,6$, and
 12. |

Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate
FirstCouponDate (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

bnddury

| LastCouponDate | (Optional) Last coupon date of a bond prior to the
 maturity date. In the absence of a specified
 FirstCouponDate, a specified LastCouponDate
 determines the coupon structure of the bond. The coupon
 structure of a bond is truncated at the LastCouponDate
 regardless of where it falls and will be followed only by
 the bond's maturity cash flow date.
 (Future implementation; optional) Date when a bond
 actually starts (the date from which a bond's cash flows
 can be considered). To make an instrument
 forward-starting, specify this date as a future date. If
 StartDate is not explicitly specified, the effective start
 date is the settlement date. |
| :--- | :--- |
| Face | (Optional) Face or par value. Default = 100. |

All specified arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill unspecified entries in input vectors with NaN. Dates can be serial date numbers or date strings.

[^2]
Examples

Find the duration of a bond at three different yield values.

```
Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;
[ModDuration,YearDuration,PerDuration]=bnddury(Yield,...
CouponRate, Settle, Maturity, Period, Basis)
ModDuration =
    4.2444
    4.1924
    4.1751
YearDuration =
    4.3292
    4.3077
    4.3004
PerDuration =
    8.6585
    8.6154
    8.6007
```

See Also
bndconvp, bndconvy, bnddurp

bndprice

Purpose

Price a fixed income security from yield to maturity (SIA compliant)

Syntax

Arguments

```
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity)
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity,
    Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
    LastCouponDate, StartDate, Face)
```

Required and optional inputs can be number of bonds (NUMBONDS) by 1 or 1 -by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can also be passed as empty matrices ([]) or omitted at the end of the argument list. The value NaN in any optional input invokes the default value for that entry. Dates can be serial date numbers or date strings.
$\left.\left.\begin{array}{ll}\text { Yield } & \begin{array}{l}\text { Bond yield to maturity on a semiannual basis. } \\ \text { CouponRate }\end{array} \\ \text { Settle } \\ \text { Decimal number indicating the annual percentage rate } \\ \text { used to determine the coupons payable on a bond. }\end{array}\right\} \begin{array}{l}\text { Settlement date. A vector of serial date numbers or date } \\ \text { strings. Settle must be earlier than or equal to } \\ \text { Maturity. }\end{array}\right\}$

bndprice

| IssueDate | |
| :--- | :--- |
| FirstCouponDate | (Optional) Date when a bond was issued.
 (Optional) Date when a bond makes its first coupon
 payment. When FirstCouponDate and LastCouponDate
 are both specified, FirstCouponDate takes precedence in
 determining the coupon payment structure. |
| LastCouponDate | |
| (Optional) Last coupon date of a bond prior to the
 maturity date. In the absence of a specified | |
| FirstCouponDate, a specified LastCouponDate | |
| determines the coupon structure of the bond. The coupon | |
| structure of a bond is truncated at the LastCouponDate | |
| regardless of where it falls and will be followed only by | |
| the bond's maturity cash flow date. | |

where the sum is over the bonds' cash flows and corresponding times in units of semiannual coupon periods.

bndprice

```
Examples
Price a treasury bond at three different yield values.
Yield = [0.04; 0.05; 0.06];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...
Maturity, Period, Basis)
Price =
    104.8106
        99.9951
        95.4384
AccruedInt =
    0.4945
    0.4945
    0.4945
```


See Also

cfamounts, bndyield

Purpose

Syntax

Arguments

| SpotInfo | Two-column matrix:
 [SpotDates ZeroRates]
 Zero rates correspond to maturities on the spot dates, continuously compounded. You will obtain the best results if you choose evenly spaced rates close together, for example, by using the three-month deposit rates. |
| :---: | :---: |
| Price | Price for every $\$ 100$ notional amount of bonds whose spreads are computed. |
| CouponRate | Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond. |
| Settle | Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity. |
| Maturity | Maturity date. A vector of serial date numbers or date strings. |
| Period | (Optional) Coupons per year of the bond. A scalar or vector of integers. Allowed values are $0,1,2$ (default), 3 , 4,6 , and 12. |
| Basis | (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=$ actual $/ 365,4=30 / 360(\mathrm{PSA})$,
 $5=30 / 360$ (ISDA), $6=30 / 360$ (European),
 7 = actual/365 (Japanese). |

bndspread

| EndMonthRule | (Optional) End-of-month rule. A vector. This rule applies
 only when Maturity is an end-of-month date for a month
 having 30 or fewer days. $0=$ ignore rule, meaning that a
 bond's coupon payment date is always the same
 numerical day of the month. $1=$ set rule on (default),
 meaning that a bond's coupon payment date is always
 the last actual day of the month. |
| :--- | :--- |
| IssueDate | (Optional) Date when a bond was issued. |
| FirstCouponDate | (Optional) Date when a bond makes its first coupon
 payment. When FirstCouponDate and LastCouponDate
 are both specified, FirstCouponDate takes precedence in
 determining the coupon payment structure. |
| LastCouponDate | (Optional) Last coupon date of a bond prior to the |
| maturity date. In the absence of a specified | |

Description

Examples

Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) computes the static spread to benchmark in basis points.

Compute a FNMA $43 / 8$ spread over a Treasury spot-curve.

```
% Build spot curve.
    RefCpn = [0;
        0;
```

 RefMaturity = [datenum('02/27/2003');
 datenum('05/29/2003');
 datenum('10/31/2004');
 datenum('11/15/2007');
 datenum('11/15/2012');
 datenum('02/15/2031')];
    ```
        2.125;
        3;
        4;
        5.375] / 100;
RefPrices = [99.6964;
            99.3572;
        100.3662;
            99.4511;
            99.4299;
        106.5756];
RefBonds = [RefPrices, RefMaturity, RefCpn];
Settle = datenum('26-Nov-2002');
[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ...
RefPrices, Settle)
% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday, Nov 26, 2002
Price = 105.484;
Coupon = 0.04375;
Maturity = datenum('15-0ct-2006');
% All optional inputs are supposed to be accounted by default,
% except the accrued interest under 30/360 (SIA), so:
Period = 2;
Basis = 1;
SpotInfo = [CurveDates, ZeroRates];
% Compute static spread over treasury curve, taking into account
% the shape of curve as derived by bootstrapping method embedded
% within bndspread.
SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...
Maturity, Period, Basis)
plot(CurveDates, ZeroRates*100, 'b', CurveDates, ...
ZeroRates*100+SpreadInBP/100, 'r--')
legend({'Treasury'; 'FNMA 4 3/8'})
xlabel('Curve Dates')
ylabel('Spot Rate [%]')
```


bndspread

```
grid;
ZeroRates =
    0.0121
    0.0127
    0.0194
    0.0317
    0.0423
    0.0550
CurveDates =
    7 3 1 6 3 9
    731730
    7 3 2 2 5 1
    7 3 3 3 6 1
    735188
    741854
```

SpreadInBP =
18.7582

See Also bndprice, bndyield

Purpose Yield to maturity for a fixed income security (SIA compliant)

Syntax | Yield $=$ bndyield(Price, CouponRate, Settle, Maturity, Period, Basis, |
| :---: |
| EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, |
| StartDate, Face) |

Arguments Required and optional inputs can be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can also be passed as empty matrices ([]) or omitted at the end of the argument list. The value NaN in any optional input invokes the default value for that entry. Dates can be serial date numbers or date strings.

Price	Clean price of the bond (current price without accrued interest).
CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and
	12.

IssueDate	(Optional) Date when a bond was issued. FirstCouponDate (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
(Future implementation; optional) Date when a bond	
StartDate	actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
Face	(Optional) Face or par value. Default = 100.

Description

Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) given NUMBONDS bonds with SIA date parameters and clean prices (excludes accrued interest), returns the bond equivalent yields to maturity.

Yield is a NUMBONDS-by-1 vector of the bond equivalent yields to maturity with semiannual compounding.

Price and Yield are related by the formula

```
Price + Accrued_Interest = sum(Cash_Flow*(1+Yield/2)^(-Time))
```

where the sum is over the bonds' cash flows and corresponding times in units of semiannual coupon periods.

bndyield

Examples

See Also

Compute the yield of a treasury bond at three different price values.

```
    Price = [95; 100; 105];
    CouponRate = 0.05;
    Settle = '20-Jan-1997';
    Maturity = '15-Jun-2002';
    Period = 2;
    Basis = 0;
    Yield = bndyield(Price, CouponRate, Settle,...
    Maturity, Period, Basis)
    Yield =
        0.0610
        0.0500
        0.0396
```

 bndprice, cfamounts
 Purpose
Syntax

Arguments

Description

Bollinger band chart

```
bolling(Asset, Samples, Alpha)
[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha,
    Width)
```

Asset Vector of asset data.
Samples Number of samples to use in computing the moving average.
Alpha (Optional) Exponent used to compute the element weights of the moving average. Default = 0 (simple moving average).

Width (Optional) Number of standard deviations to include in the envelope. A multiplicative factor specifying how tight the bands should be around the simple moving average. Default $=2$.
bolling(Asset, Samples, Alpha, Width) plots Bollinger bands for given Asset data. This form of the function does not return any data.
[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha, Width) returns Movavgv with the moving average of the Asset data, UpperBand with the upper band data, and LowerBand with the lower band data. This form of the function does not plot any data.

Note The standard deviations are normalized by $\mathrm{N}-1$, where $\mathrm{N}=$ the sequence length.

If Asset is a column vector of closing stock prices

```
    bolling(Asset, 20, 1)
```

plots linear 20-day moving average Bollinger bands based on the stock prices.
[Movavgv, UpperBand, LowerBand] = bolling(Asset, 20, 1)
returns Movavgv, UpperBand, and LowerBand as vectors containing the moving average, upper band, and lower band data, without plotting the data.

bolling

See Also

candle, dateaxis, highlow, movavg, pointfig

Purpose
Syntax Busday = busdate (Date, Direction, Holiday, Weekend)
Arguments

Description
Next or previous business day

Date Reference date. Enter as serial date number or date string.
Direction (Optional) Direction. $1=$ next (default) or $-1=$ previous business day.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using serial date numbers improves performance.) The holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1 , the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), Weekend $=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Busday = busdate(Date, Direction, Holiday, Weekend) returns the serial date number of the next or previous business day from the reference date.

Use the function datestr to convert serial date numbers to formatted date strings.

Example 1:
Busday = busdate('3-Jul-2001', 1)
Busday =
731037
datestr(Busday)
ans =
05-Jul-2001
Example 2: You can indicate that Saturday is a business day by appropriately setting the Weekend argument.

```
Weekend = [1 0 0 0 0 0 0}]
```


busdate

July 4, 2003, falls on a Friday. Use busdate to verify that Saturday, July 5, is actually a business day.

```
Date = datestr(busdate('3-Jul-2001', 1, , Weekend))
```


See Also
 holidays, isbusday

Purpose
Syntax candle(High, Low, Close, Open, Color)
Arguments

Description

Examples

See Also between the opening and closing price) is unfilled. candle(High, Low, Close, Open, 'cyan')
plots a candlestick chart with cyan candles.
bolling, dateaxis, highlow, movavg, pointfig
candle(High, Low, Close, Open, Color) plots a candlestick chart given column vectors with the high, low, closing, and opening prices of a security.

If the closing price is greater than the opening price, the body (the region

If the opening price is greater than the closing price, the body is filled.
Given High, Low, Close, and Open as equal-size vectors of stock price data

cfamounts

Purpose Cash flow and time mapping for bond portfolio (SIA compliant)

Syntax	[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments
$\left.\begin{array}{ll}\text { CouponRate } & \begin{array}{l}\text { Decimal number indicating the annual percentage rate } \\ \text { used to determine the coupons payable on a bond. }\end{array} \\ \text { Settle } & \begin{array}{l}\text { Settlement date. A vector of serial date numbers or date } \\ \text { strings. Settle must be earlier than or equal to } \\ \text { Maturity. }\end{array} \\ \text { Maturity } & \begin{array}{l}\text { Maturity date. A vector of serial date numbers or date } \\ \text { strings. }\end{array} \\ \text { Period } & \text { (Optional) Coupons per year of the bond. A vector of } \\ \text { integers. Allowed values are } 0,1,2 \text { (default), } 3,4,6, \text { and }\end{array}\right\}$

LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
Face	(Optional) Face or par value. Default = 100.

Required arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

Description

[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) returns matrices of cash flow amounts, cash flow dates, time factors, and cash flow flags for a portfolio of NUMBONDS fixed income securities. The elements contained in the cash flow matrix, time factor matrix, and cash flow flag matrix correspond to the cash flow dates for each security. The first element of each row in the cash flow matrix is the accrued interest payable on each bond. This is zero in the case of all zero coupon bonds. This function determines all cash flows and time mappings for a bond whether or not the coupon structure contains odd first or last periods. All output matrices are padded with NaNs as necessary to ensure that all rows have the same number of elements.

CFlowAmounts is the cash flow matrix of a portfolio of bonds. Each row represents the cash flow vector of a single bond. Each element in a column represents a specific cash flow for that bond.

cfamounts

CFlowDates is the cash flow date matrix of a portfolio of bonds. Each row represents a single bond in the portfolio. Each element in a column represents a cash flow date of that bond.

TFactors is the matrix of time factors for a portfolio of bonds. Each row corresponds to the vector of time factors for each bond. Each element in a column corresponds to the specific time factor associated with each cash flow of a bond. Time factors are useful in determining the present value of a stream of cash flows. The term "time factor" refers to the exponent TF in the discounting equation

$$
P V=C F /(1+z / 2)^{T F}
$$

where:
$P V=$ present value of a cash flow
$C F=$ the cash flow amount
$z=$ the risk-adjusted annualized rate or yield corresponding to given cash flow. The yield is quoted on a semiannual basis.
$T F=$ time factor for a given cash flow. Time is measured in semiannual periods from the settlement date to the cash flow date. In computing time factors, we use SIA actual/actual day count conventions for all time factor calculations.

CFlowFlags is the matrix of cash flow flags for a portfolio of bonds. Each row corresponds to the vector of cash flow flags for each bond. Each element in a column corresponds to the specific flag associated with each cash flow of a bond. Flags identify the type of each cash flow (e.g., nominal coupon cash flow, front or end partial or "stub" coupon, maturity cash flow). Possible values are shown in the table.

Flag	Cash Flow Type
0	Accrued interest due on a bond at settlement.
1	Initial cash flow amount smaller than normal due to "stub" coupon period. A stub period is created when the time from issue date to first coupon is shorter than normal.

Flag Cash Flow Type

2 Larger than normal initial cash flow amount because first coupon period is longer than normal.

3 Nominal coupon cash flow amount.
4 Normal maturity cash flow amount (face value plus the nominal coupon amount).

5 End "stub" coupon amount (last coupon period abnormally short and actual maturity cash flow is smaller than normal).
$6 \quad$ Larger than normal maturity cash flow because last coupon period longer than normal.
$7 \quad$ Maturity cash flow on a coupon bond when the bond has less than one coupon period to maturity.

8 Smaller than normal maturity cash flow when bond has less than one coupon period to maturity.

9 Larger than normal maturity cash flow when bond has less than one coupon period to maturity.

10 Maturity cash flow on a zero coupon bond.

Examples

Consider a portfolio containing a corporate bond paying interest quarterly and a treasury bond paying interest semiannually. Compute the cash flow structure and the time factors for each bond.

```
Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, Period, Basis)
CFlowAmounts =
    -0.7667 1.5000 1.5000 1.5000 1.5000 101.5000
```

-1.8989	2.5000	2.5000	2.5000	102.5000	NaN
CFlowDates =					
728234	728278	728368	728460	728552	728643
728234	728278	728460	728643	728825	NaN
TFactors =					
00.2404	0.7403	1.2404	1.7403	2.2404	
$0 \quad 0.2404$	1.2404	2.2404	3.2404	NaN	
CFlowFlags =					
03	33	$3 \quad 4$			
03	3 3	4 NaN			

See Also

accrfrac, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

Purpose
Syntax CFlowConvexity = cfconv(CashFlow, Yield)
Arguments

Description

Examples

See Also
Cash flow convexity

CashFlow A vector of real numbers.
Yield Periodic yield. A scalar. Enter as a decimal fraction. flow in periods. a periodic yield of 2.5%

```
CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];
Convex = cfconv(CashFlow, 0.025)
Convex =
    90.4493 (periods)
```

bndconvp. bndconvy, bnddurp, bnddury, cfdur

CFlowConvexity $=$ cfconv(CashFlow, Yield) returns the convexity of a cash

Given a cash flow of nine payments of $\$ 2.50$ and a final payment $\$ 102.50$, with
Purpose Cash flow dates for a fixed-income security (SIA compliant)

Syntax	CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.

Required arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if Maturity contains N dates, then Settle must contain N dates or a single date.

Description

CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns a matrix of cash flow dates for a bond or set of bonds. cfdates determines all cash flow dates for a bond whether or not the coupon payment structure is normal or the first and/or last coupon period is long or short.

CFlowDates is an N-row matrix of serial date numbers, padded with NaNs as necessary to ensure that all rows have the same number of elements. Use the function datestr to convert serial date numbers to formatted date strings.

Note The cash flow flags for a portfolio of bonds were formerly available as the cfdates second output argument, CFlowFlags. You can now use cfamounts to get these flags. If you specify a CFlowFlags argument, cfdates displays a message directing you to use cfamounts.

Examples

See Also

```
CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)
CFlowDates =
    729541 729724 729906 730089
datestr(CFlowDates)
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998
```

Given three securities with different maturity dates and the same default arguments

```
Maturity = ['30-Sep-1997'; '31-Oct-1998'; '30-Nov-1998'];
CFlowDates = cfdates('14-Mar-1997', Maturity)
CFlowDates =
\begin{tabular}{rrrr}
729480 & 729663 & NaN & NaN \\
729510 & 729694 & 729875 & 730059 \\
729541 & 729724 & 729906 & 730089
\end{tabular}
```

Look at the cash-flow dates for the last security.

```
datestr(CFlowDates(3,:))
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998
```

accrfrac, cfamounts, cftimes, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

Purpose

Arguments

Description

Examples

See Also

Syntax [Duration, ModDuration] = cfdur(CashFlow, Yield)
Cash-flow duration and modified duration

CashFlow A vector of real numbers.
Yield Periodic yield. A scalar. Enter as a decimal fraction.
[Duration, ModDuration] = cfdur(CashFlow, Yield) calculates the duration and modified duration of a cash flow in periods.

Given a cash flow of nine payments of $\$ 2.50$ and a final payment $\$ 102.50$, with a periodic yield of 2.5%

```
CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];
[Duration, ModDuration] = cfdur(CashFlow, 0.025)
Duration =
    8.9709 (periods)
ModDuration =
    8.7521 (periods)
```

bndconvp, bndconvy, bnddurp, bnddury, cfconv

cfport

Purpose
 Syntax

Portfolio form of cash flow amounts

Arguments

Description

Examples

 CFlowDates, TFactors) row contain zeros. bond portfolio. the first date in AllDates.[CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts,

CFlowAmounts Number of bonds (NUMBONDS) by number of cash flows (NUMCFS) matrix with entries listing cash flow amounts corresponding to each date in CFlowDates.

CFlowDates NUMBONDS-by-NUMCFS matrix with rows listing cash flow dates for each bond and padded with NaNs.

TFactors (Optional) NUMBONDS-by-NUMCFS matrix with entries listing the time between settlement and the cash flow date measured in semiannual coupon periods.
[CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts, CFlowDates, TFactors) computes a vector of all cash flow dates of a bond portfolio, and a matrix mapping the cash flows of each bond to those dates. Use the matrix for pricing the bonds against a curve of discount factors.

CFBondDate is a NUMBONDS by number of dates (NUMDATES) matrix of cash flows indexed by bond and by date in AllDates. Each row contains a bond's cash flow values at the indices corresponding to entries in AllDates. Other indices in the

AllDates is a NUMDATES-by- 1 list of all dates that have any cash flow from the

AllTF is a NUMDATES-by- 1 list of time factors corresponding to the dates in AllDates. If TFactors is not entered, AllTF contains the number of days from

IndByBond is a NUMBONDS-by-NUMCFS matrix of indices. The i th row contains a list of indices into AllDates where the i th bond has cash flows. Since some bonds have more cash flows than others, the matrix is padded with NaNs.

Use cfamounts to calculate the cash flow amounts, cash flow dates, and time factors for each of two bonds. Then use cfplot to plot the cash flow diagram.

```
Settle = '03-Aug-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000'];
CouponRate= [0.06; 0.05];
Period = [3;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,...
Settle, Maturity, Period, Basis);
cfplot(CFlowDates,CFlowAmounts)
xlabel('Numeric Cash Flow Dates')
ylabel('Bonds')
title('Cash Flow Diagram')
```


Finally, call cfport to map the cash flow amounts to the cash flow dates.
Each row in the resultant CFBondDate matrix represents a bond. Each column represents a date on which one or more of the bonds has a cash flow. A 0 means the bond did not have a cash flow on that date. The dates associated with the columns are listed in AllDates. For example, the first bond had a cash flow of 2.000 on 730347 . The second bond had no cash flow on this date.

For each bond, IndByBond indicates the columns of CFBondDate, or dates in AllDates, for which a bond has a cash flow.

```
[CFBondDate, AllDates, AllTF, IndByBond] = ...
cfport(CFlowAmounts, CFlowDates, TFactors)
CFBondDate =
\begin{tabular}{rrrrrrr}
-1.8000 & 2.0000 & 2.0000 & 2.0000 & 0 & 102.0000 & 0 \\
-0.6694 & 0 & 2.5000 & 0 & 2.5000 & 0 & 102.5000
\end{tabular}
AllDates =
```

 730335
 730347
 730469
 730591
 730652
 730713
 730835
 AllTF =
0
0.0663
0.7322
1.3989
1.7322
2.0663
2.7322
IndByBond =
$\begin{array}{lllll}1 & 2 & 3 & 4 & 6\end{array}$
$\begin{array}{lllll}1 & 3 & 5 & 7 & \mathrm{NaN}\end{array}$
See Also cfamounts

Purpose

Syntax

Arguments

Time factors corresponding to bond cash flow dates (SIA compliant)

```
TFactors = cftimes(Settle, Maturity, Period, Basis, EndMonthRule,
    IssueDate, FirstCouponDate, LastCouponDate, StartDate)
```

Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), 3, 4, 6, and 12.
Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate	(Optional) Date when a bond was issued.
FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
(Future implementation; optional) Date when a bond	
actually starts (the date from which a bond's cash flows	
can be considered). To make an instrument	
forward-starting, specify this date as a future date. If	
StartDate is not explicitly specified, the effective start	
date is the settlement date.	

Examples

See Also
accrfrac, cfdates, cfamounts, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz, date2time

Purpose
Syntax
Arguments
Description

Examples
ExpSigma $=\left[\begin{array}{ll}0.5 & 2.0\end{array}\right]$;
ExpCorrC $=\left[\begin{array}{ll}1.0 & -0.5\end{array}\right.$
-0.5 1.0];
ExpCovariance $=$ corr2cov(ExpSigma, ExpCorrC)
Expected results:
ExpCovariance $=$

$$
\begin{array}{rr}
0.2500 & -0.5000 \\
-0.5000 & 4.0000
\end{array}
$$

See Also corrcoef, cov, cov2corr, ewstats, std

```
Purpose Convert covariance to standard deviation and correlation coefficient
Syntax [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)
Arguments ExpCovariance n-by-n covariance matrix, e.g., from cov or ewstats. n is
                                the number of random processes.
Description [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance) converts covariance to
standard deviations and correlation coefficients.
ExpSigma is a 1-by-n vector with the standard deviation of each process.
ExpCorrC is an n-by-n matrix of correlation coefficients.
ExpSigma(i) = sqrt(ExpCovariance(i,i))
Examples
ExpCovariance = [0.25 -0.5
                                    -0.5 4.0];
[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)
Expected results:
        ExpSigma =
            0.5000 2.0000
            ExpCorrC =
\begin{tabular}{rr}
1.0000 & -0.5000 \\
-0.5000 & 1.0000
\end{tabular}
See Also
corr2cov, corrcoef, cov, ewstats, std
```

Purpose
Coupon payments remaining until maturity (SIA compliant)

Syntax

Arguments Settle

Maturity Maturity date. A vector of serial date numbers or date strings.

Period (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.

Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate (Optional) Date when a bond was issued.
FirstCouponDate (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

cpncount

Given three coupon bonds with different maturity dates and the same default arguments

```
Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];
NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)
NumCouponsRemaining =
7
9
1 1
```

See Also
accrfrac, cfamounts, cfdates, cftimes, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

Purpose	Next coupon date for fixed-income security (SIA compliant)
Syntax	NextCouponDate = cpndaten(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
Arguments	$\begin{array}{ll}\text { Settle } & \begin{array}{l}\text { Settlement date. A vector of serial date numbers or date } \\ \text { strings. Settle must be earlier than or equal to } \\ \text { Maturity. }\end{array}\end{array}$
	Maturity \quad Maturity date. A vector of serial date numbers or date strings.
	Period (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.
	$\begin{array}{ll} \text { Basis } & \begin{array}{l} \text { (Optional) Day-count basis of the instrument. A vector of } \\ \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ 2=\text { actual/360, } 3=\text { actual } / 365,4=30 / 360(\text { PSA }), ~ \\ 5=30 / 360 ~(\text { ISDA }), ~ \\ 5 \end{array}=30 / 360 \text { (European), } \\ 7=\text { actual/365 (Japanese). } \end{array}$
	EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate (Optional) Date when a bond was issued.

FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
LastCouponDate \quad(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified	
	FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.

Required arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

Description

Examples

NextCouponDate = cpndaten(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) returns the next coupon date after the settlement date. This function finds the next coupon date whether or not the coupon structure is synchronized with the maturity date.

NextCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

```
NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 0);
datestr(NextCouponDate)
ans =
30-May-1997
```

```
NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 1);
datestr(NextCouponDate)
ans =
31-May-1997
Maturity = ['30 Sep 2000'; '31 Oct 2000'; '30 Nov 2000'];
NextCouponDate = cpndaten('14 Mar 1997', Maturity);
datestr(NextCouponDate)
ans =
31-Mar-1997
30-Apr-1997
31-May-1997
```

See Also
accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

Purpose
Next quasi coupon date for fixed income security (SIA compliant)

Syntax	NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.

cpndatenq

FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified
	FirstCouponDate, a specified LastcouponDate determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.	

Required arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices. Fill unspecified entries in input vectors with the value NaN. Dates can be serial date numbers or date strings.

Description

Examples

NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) determines the next quasi coupon date for a portfolio of NUMBONDS fixed income securities whether or not the first or last coupon is normal, short, or long. For zero coupon bonds cpndatenq returns quasi coupon dates as if the bond had a semiannual coupon structure. Successive quasi coupon dates determine the length of the standard coupon period for the fixed income security of interest and do not necessarily coincide with actual coupon payment dates.

Outputs are NUMBONDS-by- 1 vectors.
If Settle is a coupon date, this function never returns the settlement date. It returns the quasi coupon date strictly after settlement.

NextQuasiCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

Given a pair of bonds with the characteristics

```
Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');
```

Compute NextCouponDate for this pair of bonds. NextCouponDate = cpndaten(Settle, Maturity); datestr(NextCouponDate)
ans =
31-May-1997
10-Jun-1998
Compute the next quasi coupon dates for these two bonds.

```
NextQuasiCouponDate = cpndatenq(Settle, Maturity);
datestr(NextQuasiCouponDate)
ans =
31-May-1997
10-Jun-1998
```

Because no FirstCouponDate has been specified, the results are identical.
Now supply an explicit FirstCouponDate for each bond.

```
FirstCouponDate = char('30-Nov-1997','10-Dec-1998');
```

Compute the next coupon dates.

```
NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],...
FirstCouponDate);
datestr(NextCouponDate)
ans =
30-Nov-1997
10-Dec-1998
```

The next coupon dates are identical to the specified first coupon dates.
Now recompute the next quasi coupon dates.

```
NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],...
FirstCouponDate);
datestr(NextQuasiCouponDate)
ans =
31-May-1997
10-Jun-1998
```

These results illustrate the distinction between actual coupon payment dates and quasi coupon dates. FirstCouponDate (and LastCouponDate, as well), when specified, is associated with an actual coupon payment and also serves as the synchronization date for determining all quasi coupon dates. Since each bond in this example pays semiannual coupons, and the first coupon date occurs more than six months after settlement, each will have an intermediate quasi coupon date before the actual first coupon payment occurs.

See Also

accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

Purpose Previous coupon date for fixed-income security (SIA compliant)

Syntax	PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.

cpndatep

FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified
	FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastcouponDate regardless of where it falls and will be followed only by
the bond's maturity cash flow date.	

Required arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

Description

PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) returns the previous coupon date on or before settlement for a portfolio of bonds. This function finds the previous coupon date whether or not the coupon structure is synchronized with the maturity date.

For zero coupon bonds the previous coupon date is the issue date, if available. However, if the issue date is not supplied, the previous coupon date for zero coupon bonds is the previous quasi coupon date calculated as if the frequency is semiannual.

PreviousCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

Examples

See Also
accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, cpndatepq, cpndaysn, cpndaysp, cpnpersz

PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',... 2, 0, 0);
datestr(PreviousCouponDate)
ans =

30-Dec-1996

PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',... 2, 0, 1);
datestr(PreviousCouponDate)
ans $=$

31-Dec-1996

Maturity = ['30 Apr 2000'; '31 May 2000'; '30 Jun 2000']; PreviousCouponDate = cpndatep('14 Mar 1997', Maturity);
datestr(PreviousCouponDate)
ans $=$

31-Oct-1996
30-Nov-1996
31-Dec-1996

cpndatepq

Purpose	Previous quasi coupon date for fixed income security (SIA compliant)
Syntax	PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
Arguments	Settle Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity Maturity date. A vector of serial date numbers or date strings.
	Period (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.
	$\text { Basis } \quad \begin{aligned} & \text { (Optional) Day-count basis of the instrument. A vector of } \\ & \text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), } \\ & 2=\text { actual/360, } 3=\text { actual } / 365,4=30 / 360 \text { (PSA), } \\ & 5=30 / 360 \text { (ISDA), } 6=30 / 360 \text { (European), } \\ & 7=\text { actual/365 (Japanese). } \end{aligned}$
	EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate (Optional) Date when a bond was issued.

FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
LastCouponDate \quad(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified	
	FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.

Required arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices. Fill unspecified entries in input vectors with the value NaN. Dates can be serial date numbers or date strings.

Description

PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) determines the previous quasi coupon date on or before settlement for a set of NUMBONDS fixed income securities. This function finds the previous quasi coupon date for a bond with a coupon structure in which the first or last period is either normal, short, or long (whether or not the coupon structure is synchronized to maturity). For zero coupon bonds this function returns quasi coupon dates as if the bond had a semiannual coupon structure.

The term "previous quasi coupon date" refers to the previous coupon date for a bond calculated as if no issue date were specified. Although the issue date is not actually a coupon date, when issue date is specified, the previous actual coupon date for a bond is normally calculated as being either the previous coupon date or the issue date, whichever is greater. This function always returns the previous quasi coupon date regardless of issue date. If the settlement date is a coupon date, this function returns the settlement date.

PreviousQuasiCouponDate is returned as a serial date number. The function datestr converts a serial date number to a formatted date string.

cpndatepq

Examples

Given a pair of bonds with the characteristics

```
Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');
```

With no FirstCouponDate explicitly supplied, compute the PreviousCouponDate for this pair of bonds.

```
PreviousCouponDate = cpndatep(Settle, Maturity);
datestr(PreviousCouponDate)
ans =
```

30-Nov-1996
10-Dec-1997

Note that since the settlement date for the second bond is also a coupon date, cpndatep returns this date as the previous coupon date.

Now establish a FirstCouponDate and IssueDate for this pair of bonds.
FirstCouponDate $=$ char('30-Nov-1997', '10-Dec-1998');
IssueDate = char('30-May-1996', '10-Dec-1996');
Recompute the PreviousCouponDate for this pair of bonds.
PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ... IssueDate, FirstCouponDate);
datestr(PreviousCouponDate)
ans =

30-May-1996
10-Dec-1996
Since both of these bonds settled before the first coupon had been paid, cpndatep returns the IssueDate as the PreviousCouponDate.

Using the same data, compute PreviousQuasiCouponDate.

```
PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,...
IssueDate, FirstCouponDate);
datestr(PreviousQuasiCouponDate)
ans =
30-Nov-1996
10-Dec-1997
```

For the first bond the settlement date is not a normal coupon date. The PreviousQuasiCouponDate is the coupon date prior to or on the settlement date. Since the coupon structure is synchronized to FirstCouponDate, the previous quasi coupon date is $30-\mathrm{Nov}-1996$. PreviousQuasiCouponDate disregards IssueDate and FirstCouponDate in this case. For the second bond the settlement date (10 -Dec-1997) occurs on a date when a coupon would normally be paid in the absence of an explicit FirstCouponDate. cpndatepq returns this date as PreviousQuasiCouponDate.

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, cpndatep, cpndaysn, cpndaysp, cpnpersz

cpndaysn

Purpose	Number of days to next coupon date (SIA compliant)	
Syntax	NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=$ actual $/ 360,3=$ actual $/ 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.


```
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];
NumDaysNext = cpndaysn('14 Sep 2000', Maturity)
NumDaysNext =
```

 47
 77
108

See Also

accrfrac, cfamounts, cftimes, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysp, cpnpersz

Purpose
Number of days since previous coupon date (SIA compliant)

Syntax

Arguments Settle

Maturity Maturity date. A vector of serial date numbers or date strings.

Period (Optional) Coupons per year of the bond. A vector of integers. Allowed values are $0,1,2$ (default), $3,4,6$, and 12.
(Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
IssueDate (Optional) Date when a bond was issued.
FirstCouponDate (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

cpndaysp

LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.

Required arguments must be a number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty matrices.

Description | NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis, |
| :--- |
| EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, |
| StartDate) returns the number of days between the previous coupon date and |
| the settlement date for a bond or set of bonds. When the coupon frequency is 0 |
| (a zero coupon bond), the previous coupon date is calculated as if the frequency |
| were semiannual. |

Examples

```
NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 0)
NumDaysPrevious =
    7 5
NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 1)
NumDaysPrevious =
```

 74
    ```
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];
NumDaysPrevious = cpndaysp('14 Mar 2000', Maturity)
NumDaysPrevious =
```

 135
 105
74

See Also
accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpnpersz
Purpose Number of days in coupon period (SIA compliant)

Syntax \quad| NumDaysPeriod $=$ epnpersz(Settle, Maturity, Period, Basis, |
| :---: |
| EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, |
| StartDate) |

Arguments Settle
$\left.\begin{array}{ll}\text { Maturity } & \begin{array}{l}\text { Maturity date. A vector of serial date numbers or date } \\ \text { strings. }\end{array} \\ \text { Period } & \text { (Optional) Coupons per year of the bond. A vector of } \\ \text { integers. Allowed values are } 0,1,2 \text { (default), } 3,4,6 \text {, and }\end{array}\right\}$

| LastCouponDate | (Optional) Last coupon date of a bond prior to the
 maturity date. In the absence of a specified |
| ---: | :--- |
| | FirstCouponDate, a specified LastCouponDate
 determines the coupon structure of the bond. The coupon
 structure of a bond is truncated at the LastCouponDate
 regardless of where it falls and will be followed only by
 the bond's maturity cash flow date. |
| (Future implementation; optional) Date when a bond
 actually starts (the date from which a bond's cash flows
 can be considered). To make an instrument | |
| forward-starting, specify this date as a future date. If | |
| StartDate is not explicitly specified, the effective start | |
| date is the settlement date. | |

StartDate

```
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];
NumDaysPeriod = cpnpersz('14 Sep 2000', Maturity)
NumDaysPeriod =
    184
183
184
```


See Also

accrfrac, cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp

Purpose Decimal currency values to fractional values

| Syntax | Fraction $=\operatorname{cur} 2 f r a c($ Decimal, Denominator $)$ |
| :--- | :--- |
| Description | Fraction $=\operatorname{cur} 2 f r a c(D e c i m a l, ~ D e n o m i n a t o r) ~ c o n v e r t s ~ d e c i m a l ~ c u r r e n c y ~$
 values to fractional values. Fraction is returned as a string. |
| Examples | Fraction $=\operatorname{cur} 2 f r a c(12.125,8)$ |
| returns Fraction $=12.1$, a string. | |

```
Purpose Bank formatted text
Syntax String = cur2str(Value, Digits)
Description String = cur2str(Value, Digits) returns the given value in bank format.
By default, Digits = 2. A negative Digits rounds the value to the left of the
decimal point. String is returned as a string with a leading dollar sign ($).
Negative numbers are displayed in parentheses.
```


Examples

```
String = cur2str(-8264, 2)
\[
\text { returns String }=(\$ 8264.00)
\]
```

See Also cur2frac, frac2cur

Purpose

Syntax

Arguments
ttle

Dates

Compounding

Settlement date. A vector of serial date numbers or date strings.

A vector of dates corresponding to the compounding value.

Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:

Compounding $=1,2,3,4,6,12$
Disc $=(1+Z / F)^{\wedge}(-T)$, where F is the compounding frequency, Z is the zero rate, and T is the time in periodic units, e.g. $T=F$ is one year.

Compounding $=365$
Disc $=(1+Z / F)^{\wedge}(-T)$, where F is the number of days in the basis year and T is a number of days elapsed computed by basis.

Compounding $=-1$
Disc $=\exp (-T * Z)$, where T is time in years.

| Basis | (Optional) Day-count basis of the instrument. A vector of
 integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA),
 $2=$ actual/360, $3=\mathrm{actual} / 365,4=30 / 360$ (PSA), |
| :--- | :--- |
| $5=30 / 360$ (ISDA), $6=30 / 360$ (European), | |
| EndMonthRule | $7=$ actual/365 (Japanese). |
| | (Optional) End-of-month rule. A vector. This rule applies |
| only when Maturity is an end-of-month date for a month | |
| having 30 or fewer days. $0=$ ignore rule, meaning that a | |
| bond's coupon payment date is always the same | |
| numerical day of the month. $1=$ set rule on (default), | |
| meaning that a bond's coupon payment date is always | |
| the last actual day of the month. | |

[^3]TFactors is a vector of time factors.
F is a scalar of related compounding frequencies.
date2time is the inverse of time2date.

See Also

cftimes, disc2rate, rate2disc, time2date

Purpose
Convert serial-date axis labels to calendar-date axis labels

Syntax dateaxis(Aksis, DateForm, StartDate)

Arguments Aksis (Optional) Determines which axis tick labels- x, y, or z-to replace. Enter as a string. Default = ' x '.

DateForm (Optional) Specifies which date format to use. Enter as an integer from 0 to 17. If no DateForm argument is entered, this function determines the date format based on the span of the axis limits. For example, if the difference between the axis minimum and maximum is less than 15 , the tick labels are converted to three-letter day-of-the-week abbreviations (DateForm = 8). See DateForm format descriptions below.
StartDate (Optional) Assigns the date to the first axis tick value. Enter as a string. The tick values are treated as serial date numbers. The default StartDate is the lower axis limit converted to the appropriate date number. For example, a tick value of 1 is converted to the date 01-Jan-0000. Entering StartDate as '06-apr-1999' assigns the date April 6, 1999 to the first tick value and the axis tick labels are set accordingly.

Description dateaxis(Aksis, DateForm, StartDate) replaces axis tick labels with date labels on a graphic figure.

See the MATLAB set command for information on modifying the axis tick values and other axis parameters.

| DateForm | Format | Description |
| :--- | :--- | :--- |
| 0 | 01 -Mar-1999 15:45:17 | day-month-year hour:minute:second |
| 1 | 01 -mar-1999 | day-month-year |
| 2 | $03 / 01 / 99$ | month/day/year |
| 3 | Mar | month, three letters |

dateaxis

| DateForm | Format | Description |
| :--- | :--- | :--- |
| 4 | M | month, single letter |
| 5 | 3 | month |
| 6 | $03 / 01$ | month/day |
| 7 | 1 | day of month |
| 8 | Wed | day of week, three letters |
| 9 | W | day of week, single letter |
| 10 | 1999 | year, four digits |
| 11 | 99 | year, two digits |
| 12 | Mar99 | month year |
| 13 | $15: 45: 17$ | hour:minute:second |
| 14 | $03: 45: 17$ PM | hour:minute:second AM or PM |
| 15 | $15: 45$ | hour:minute |
| 16 | $03: 45$ PM | hour:minute AM or PM |
| 17 | $95 / 03 / 01$ | year month day |

Examples

See Also bolling, candle, datenum, datestr, highlow, movavg, pointfig

Purpose
Syntax
Arguments
Description

Examples

Display date entries
datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

NumMat Numeric matrix to display
DateForm (Optional) Date format. See datestr for available and default format flags.
datedisp(NumMat, DateForm) displays a matrix with the serial dates formatted as date strings, using a matrix with mixed numeric entries and serial date number entries. Integers between datenum ('01-Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date numbers, while all other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is assigned, the function prints the array to the display.

| $\text { NumMat }=[7$ | $\begin{aligned} & 730,0.1 \\ & 731,0 . c \end{aligned}$ | 03, 1200730
 05, 1000 N | |
| :---: | :---: | :---: | :---: |
| NumMat = | | | |
| $1.0 \mathrm{e}+05$ | | | |
| 7.3073 | 0.0000 | 0.0120 | 7.3010 |
| 7.3073 | 0.0000 | 0.0100 | NaN |
| datedisp(Nu | | | |
| 01-Sep-2000 | 0.03 | 1200 11- | C-1998 |
| 02-Sep-2000 | 0.05 | 1000 | |

See Also datestr

Purpose Indices of date numbers in matrix

Syntax Indices = datefind(Subset, Superset, Tolerance)
Arguments Subset Subset matrix of date numbers used to find matching date numbers in Superset. These date numbers must be a nonrepeating subset of those in Superset.

Superset Superset matrix of nonrepeating date numbers whose elements are sought.

Tolerance (Optional) Tolerance (+ /) for matching the date numbers in Superset. A positive integer. Default $=0$.

Description Indices $=$ datefind(Subset, Superset, Tolerance) returns a vector of indices to the date numbers in Superset that are present in Subset, plus or minus the Tolerance. If no date numbers match, Indices = [].

Although this function was designed for use with sequential date numbers, you can use it with any nonrepeating integers.

Examples

Superset $=$ datenum(1999, 7, 1:31);
Subset $=$ [datenum(1999, 7, 10); datenum(1999, 7, 20)];
Indices = datefind(Subset, Superset, 1)
Indices =
9
10
11
19
20
21

See Also
datenum

Purpose Date of day in future or past month

Syntax

Arguments

 EndMonthRule)TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis,

StartDate Enter as serial date numbers or date strings.
NumberMonths Vector containing number of months in future (positive) or past (negative). Values must be in integer form.

DayFlag (Optional) Vector containing values that specify how the actual day number for the target date in future or past month is determined. 0 (default) = day number should be the day in the future or past month corresponding to the actual day number of the start date. $1=$ day number should be the first day of the future or past month. $2=$ day number should be the last day of the future or past month.

This flag has no effect if EndMonthRule is set to 1.
Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. 1 = rule in effect, meaning that if you are beginning on the last day of a month, and the month has 30 or fewer days, you will end on the last actual day of the future or past month regardless of whether that month has $28,29,30$ or 31 days)
$0=$ rule off (default), meaning that the rule is not in effect.

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then NumberMonths must be an n-by- 1 vector of integers or a single integer. TargetDate is then an n-by-1 vector of date numbers.

Description

TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis, EndMonthRule) returns the serial date number of the target date in the future or past.

Use datestr to convert serial date numbers to formatted date strings.

Examples

```
Day = datemnth('3 jun 2001', 6, 0, 0, 0)
Day =
    731188
datestr(Day)
ans =
03-Dec-2001
Day = datemnth('3 jun 2001', 6, 1, 0, 1); datestr(Day)
ans =
01-Dec-2001
Day = datemnth('31 jan 2001', 5, 0, 0, 0); datestr(Day)
ans =
30-Jun-2001
Day = datemnth('31 jan 2001', 5, 1, 0, 0); datestr(Day)
ans =
01-Jun-2001
Day = datemnth('31 jan 2001', 5, 1, 0, 1); datestr(Day)
ans =
30-Jun-2001
Day = datemnth('31 jan 2001', 5, 2, 0, 1); datestr(Day)
ans =
30-Jun-2001
Months = [1; 3; 5; 7; 9];
Day = datemnth('31 jan 2001', Months); datestr(Day)
ans =
28-Feb-2001
30-Apr-2001
30-Jun-2001
31-Aug-2001
```

See Also datestr, datevec, days360, days365, daysact, daysdif, wrkdydif

Purpose Create date number

```
Syntax DateNumber = datenum(DateString)
DateNumber = datenum(DateString, Pivot)
DateNumber = datenum(Year, Month, Day)
DateNumber = datenum(Year, Month, Day, Hour, Minute, Second)
```


Description DateNumber = datenum(DateString) returns a serial date number given a

 date string. Date numbers are the number of days that has passed since a base date. In MATLAB, date number 1 is January 1, 0000 A.D. If the input includes time components, the date number includes a fractional component.The date string can be any of several forms.

```
'19-may-1999'
'may 19, 1999'
'19-may-99'
'19-may' (current year assumed)
'5/19/99'
'5/19' (current year assumed)
'19-may-1999, 18:37'
'19-may-1999, 6:37 pm'
'5/19/99/18:37'
'5/19/99/6:37 pm'
```

Certain formats may not contain enough information to compute a date number. In these cases, missing values default to 0 for hours, minutes, and seconds; January for the month; and 1 for the day of month. The year defaults to the current year. Unless you specify a pivot year, date strings with two-character years, e.g., 12 - june-12, are assumed to lie within the 100-year period centered about the current year.

DateNumber = datenum(DateString, Pivot) assumes that two-character years lie within the 100 -year period beginning with the pivot year. The default pivot year is the current year minus 50 years.

DateNumber = datenum(Year, Month, Day) returns a serial date number given year, month, and day integers.

DateNumber = datenum(Year, Month, Day, Hour, Minute, Second) returns a serial date number given year, month, day, hour, minute, and second integers.

Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.

Examples

```
DateNumber = datenum('19-may-1999')
DateNumber = 730259
DateNumber = datenum('5/19/99')
DateNumber = 730259
DateNumber = datenum('19-may-1999, 6:37 pm')
DateNumber = 730259.78
DateNumber = datenum('5/19/99/18:37')
DateNumber = 730259.78
DateNumber = datenum(1999, 5, 19)
DateNumber = 730259
DateNumber = datenum(1999, 1:6, 19)
DateNumber = [ll30139 730170 730198 730229 730259 730290]
DateNumber = datenum(1999, 5, 19, 18, 37, 0)
DateNumber = 730259.78
DateNumber = datenum(730259)
DateNumber = 730259
```

The next example demonstrates the use of the pivot year in interpreting date strings with two-character years.

```
DateNumber = datenum('12-june-12 )
DateNumber =
    735032
```


datenum

```
datestr(735032)
ans =
12-Jun-2012
DateNumber = datenum('12-june-12 ,1900)
DateNumber =
    698507
datestr(698507)
ans =
12-Jun-1912
```

See Also datedisp, datestr, datevec, daysact, now, today

Purpose

Description
Create date string

```
Syntax DateString = datestr(Date, DateForm) DateString = datestr(Date, DateForm, Pivot) DateString = datestr(Date)
DateString = datestr(Date, DateForm)
```

Datestring = datestr(Date)

DateString = datestr(Date, DateForm) converts a date number or a date string to a date string. DateForm specifies the format of DateString. Date strings with two-character years, e.g., 12-june-12, are assumed to lie within the 100-year period centered about the current year.

DateString = datestr(Date, DateForm, Pivot) assumes that two-character years lie within the 100-year period beginning with the pivot year. The default pivot year is the current year minus 50 years.

Note MATLAB internal date handling and calculations generate no ambiguous values. However, whenever possible, programmers should use date strings containing four-digit years or serial date numbers.

DateString = datestr(Date) assumes DateForm is 1, 16, or 0 depending on whether the date number Date contains a date, time, or both, respectively. If Date is a date string, the function assumes DateForm is 1.

| DateForm | Format | Example |
| :---: | :---: | :---: |
| 0 | 'dd-mmm-yyyy HH:MM:SS' | $\begin{aligned} & 01 \text {-Mar-2000 } \\ & 15: 45: 17 \end{aligned}$ |
| 1 | 'dd-mmm-yyyy ' | 01-Mar-2000 |
| 2 | 'mm/dd/yy' | 03/01/00 |
| 3 | 'mmm' | Mar |
| 4 | 'm' | M |
| 5 | 'mm' | 03 |
| 6 | 'mm/dd ' | 03/01 |

| DateForm | Format | Example |
| :---: | :---: | :---: |
| 7 | 'dd' | 01 |
| 8 | ' ddd ' | Wed |
| 9 | 'd' | W |
| 10 | ' yyyy ' | 2000 |
| 11 | 'yy' | 00 |
| 12 | 'mmmyy ' | Mar00 |
| 13 | 'HH:MM:SS' | 15:45:17 |
| 14 | 'HH:MM:SS PM' | 3:45:17 PM |
| 15 | 'HH:MM ' | 15:45 |
| 16 | 'HH:MM PM' | 3:45 PM |
| 17 | ${ }^{\prime} Q Q-Y Y^{\prime}$ | Q1 01 |
| 18 | 'QQ' | Q1 |
| 19 | 'dd/mm' | 01/03 |
| 20 | 'dd/mm/yy' | 01/03/00 |
| 21 | 'mmm.dd.yyyy HH:MM:SS' | $\begin{aligned} & \text { Mar. 01, } 2000 \\ & 15: 45: 17 \end{aligned}$ |
| 22 | 'mmm.dd.yyyy ' | Mar.01. 2000 |
| 23 | 'mm/dd/yyyy ' | 03/01/2000 |
| 24 | 'dd/mm/yyyy ' | 01/03/2000 |
| 25 | 'yy/mm/dd' | 00/03/01 |
| 26 | 'yyyy/mm/dd' | 2000/03/01 |
| 27 | 'QQ-YYYY | Q1-2001 |
| 28 | 'mmmyyyy' | Mar2000 |

Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.

```
Examples
DateString = datestr(730123, 1)
DateString = 03-Jan-1999
DateString = datestr(730123, 2)
DateString = 01/03/99
DateString = datestr(730123, 12)
DateString = Jan99
DateString = datestr(730123.776, 0)
DateString = 03-Jan-1999 18:37:26
DateString = datestr('1/03', 1) (assuming the current year is 1999)
DateString = 03-Jan-1999
DateString = datestr(730123)
DateString = 03-Jan-1999
DateString = datestr([730123 730154 730182 730213 730243 730274])
DateString =
03-Jan-1999
03-Feb-1999
03-Mar-1999
03-Apr-1999
03-May-1999
03-Jun-1999
DateString = datestr('1/03')
DateString = 03-Jan-1999 (assuming the current year is 1999)
```

See Also dateaxis, datedisp, datenum, datevec, daysact, now, today

Purpose Date components

```
Syntax DateVector = datevec(Date)
DateVector = datevec(Date, Pivot)
[Year, Month, Day, Hour, Minute, Second] = datevec(Date)
```

Description DateVector $=$ datevec (Date) converts a date number or a date string to a date vector whose elements are [Year Month Day Hour Minute Second]. The first five elements are integers, the sixth is a floating-point number. Date strings with two-character years, e.g., 12-june-12, are assumed to lie within the 100 -year period centered about the current year.

DateVector = datevec(Date, Pivot) assumes that two-character years lie within the 100-year period beginning with the pivot year. The default pivot year is the current year minus 50 years.

Note MATLAB internal date handling and calculations generate no ambiguous values. However, whenever possible, programmers should use date strings containing four-digit years or serial date numbers.
[Year, Month, Day, Hour, Minute, Second] = datevec(Date) converts a date number or a date string to a date vector and returns the components of the date vector as individual variables.

Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.

Examples

```
DateVec = datevec('28-Jul-00')
DateVec =
    2000
DateVec = datevec(730695)
DateVec =
    2000
```

```
DateVec = datevec(730695.776)
DateVec =
            2000 
[Year, Month, Day, Hour, Minute, Second] = datevec(730695.776)
Year =
    2000
Month =
            7
Day =
            28
Hour =
            1 8
Minute =
    37
Second =
    26.4
    [Year, Month, Day] = datevec(730695:730697)
    Year =
        20002000 2000
    Month =
        7 7 7 7
    Day =
        28 29
        29 30
```

Purpose Date of future or past workday

| Syntax | EndDate = datewrkdy (StartDate, NumberWorkDays, NumberHolidays) |
| :--- | :--- |
| Arguments | StartDate |
| | Start date vector. Enter as serial date numbers or date
 strings. |
| | NumberWorkDays |
| | Vector containing number of work or business days in
 future (positive) or past (negative), including the starting
 date. |
| | Vector containing values for the number of holidays
 within NumberWorkDays. NumberHolidays and |
| | NumberWorkDays must have the same sign. |

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then NumberWorkDays must be an n-by- 1 vector of integers or a single integer. EndDate is then an n-by- 1 vector of date numbers.

Description EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays) returns the serial number of the date a given number of workdays before or after the start date.

Use datestr to convert serial date numbers to formatted date strings.

```
Workday = datewrkdy('12-dec-2000', 16, 2);
datestr(Workday)
ans =
04-Jan-2001
NumDays = [16; 20; 44];
Workdays = datewrkdy('12-dec-2000', NumDays, 2);
datestr(Workdays)
ans =
4-Jan-2001
10-Jan-2001
13-Feb-2001
```

See Also
busdate, holidays, isbusday, wrkdydif

Purpose
 Day of month

Syntax
 DayMonth = day(Date)

Description
DayMonth = day (Date) returns the day of the month given a serial date number or date string.

Examples
DayMonth = day (730544)
or
DayMonth = day('2/28/00')
returns DayMonth $=28$
See Also datevec, eomday, month, year

Purpose Days between dates based on 360-day year (SIA compliant)
Syntax NumDays = days360(StartDate, EndDate)
Arguments

Description

Examples

See Also
References
days365, daysact, daysdif, wrkdydif, yearfrac
Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2, Spring 1995.

Purpose
Days between dates based on a 360 day year (European)

```
Syntax NumDays = days360e(StartDate, EndDate)
NumDays = days360e(StartDate, EndDate)
```

Arguments

Description

Examples

StartDate Row vector, column vector, or scalar value in serial date number or date string format.

EndDate Row vector, column vector, or scalar value in serial date number or date string format.

Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all.

NumDays = days360e(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360 -day year (i.e., all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.

This day count convention is used primarily in Europe. Under this convention all months contain 30 days.

Example 1. Use this convention to find the number of days in the month of January.

```
StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360e(StartDate, EndDate)
NumDays =
```

 30
 Example 2. Use this convention to find the number of days in February during a leap year.

```
StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360e(StartDate, EndDate)
NumDays =
```

Example 3. Use this convention to find the number of days in February of a non- leap year.

```
StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360e(StartDate, EndDate)
NumDays =
```

30

See Also days360, days360isda, days360psa

Purpose

Syntax

Arguments

Description

Examples

Days between dates based on a 360 day year (ISDA)

```
NumDays = days360isda(StartDate, EndDate)
```

StartDate Row vector, column vector, or scalar value in serial date number or date string format.

EndDate Row vector, column vector, or scalar value in serial date number or date string format.

Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all.

NumDays = days360isda(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360 -day year (i.e., all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.

Under this convention all months contain 30 days.
Example 1. Use this convention to find the number of days in the month of January.

```
StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360isda(StartDate, EndDate)
NumDays =
```

30

Example 2. Use this convention to find the number of days in February during a leap year.

```
StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360isda(StartDate, EndDate)
NumDays =
```


days360isda

Example 3. Use this convention to find the number of days in February of a non- leap year.

StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360isda(StartDate, EndDate)
NumDays =

30
See Also days360, days360e, days360psa

Purpose
Days between dates based on a 360 day year (PSA)

```
Syntax NumDays = days360psa(StartDate, EndDate)
NumDays = days360psa(StartDate, EndDate)
```

Arguments

Description

Examples

StartDate Row vector, column vector, or scalar value in serial date number or date string format.

EndDate Row vector, column vector, or scalar value in serial date number or date string format.

Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all.

NumDays = days360psa(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360 -day year (i.e., all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.

Under this payment convention all months contain 30 days. In both leap and non-leap years, if the StartDate is the last day of February, this day is considered to be day 30 of the month.

Example 1. Use this convention to find the number of days in between the last day of February and the first day of March during a leap year.

```
StartDate = '29-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360psa(StartDate, EndDate)
NumDays =
```

 1
 Example 2. Use this convention to find the number of days in between the last day of February and the first day of March during a non-leap year.

```
StartDate = '28-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360psa(StartDate, EndDate)
```


days360psa

> NumDays =

1
As expected, the number of days in both cases is the same. The convention always assumes that the last day of February is the 30th day.

See Also days360, days360e, days360isda

Purpose

Arguments

Description

Examples

See Also

Syntax NumDays $=$ days365(StartDate, EndDate)

59
90
151
Days between dates based on 365-day year

StartDate Enter as serial date numbers or date strings.
EndDate Enter as serial date numbers or date strings.

Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an n-by- 1 vector of integers or a single integer. NumDays is then an n-by- 1 vector of date numbers.

NumDays = days365(StartDate, EndDate) returns the number of days between dates StartDate and EndDate based on a 365 -day year. (All months contain their actual number of days. February always contains 28 days.) If EndDate is earlier than StartDate, NumDays is negative. Enter dates as serial date numbers or date strings.

```
NumDays \(=\) days365('15-jan-2000', '15-mar-2000')
NumDays \(=\)
59
MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days365('15-jan-2000', MoreDays)
NumDays =
NumDays = days365('15-jan-2000', '15-mar-2000')
NumDays =
        5 9
    MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];
NumDays = days365('15-jan-2000', MoreDays)
NumDays =
```

 59
 90
 151
 days360, daysact, daysdif, wrkdydif, yearfrac
Purpose Actual number of days between dates

```
Syntax NumDays = daysact(StartDate, EndDate)
```

Arguments

Description NumDays = daysact(StartDate, EndDate) returns the actual number of days between two dates. Enter dates as serial date numbers or date strings. NumDays is negative if EndDate is earlier than StartDate.

NumDays = daysact(StartDate) returns the actual number of days between the MATLAB base date and StartDate. In MATLAB, the base date 1 is 1-Jan-0000 A.D. See datenum for a similar function.

```
NumDays = daysact('7-sep-2002', '25-dec-2002')
NumDays =
        1 0 9
NumDays = daysact('9/7/2002')
NumDays =
            731466
MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];
NumDays = daysact(MoreDays, '12/25/2002')
NumDays =
        109
        6 4
        50
```

See Also
datenum, datevec, days360, days365, daysdif

Purpose Date away from a starting date for any day-count basis

Syntax NumDays = daysadd(StartDate, NumDays, Basis)

Arguments

Description

Examples

StartDate Start date. Enter as serial date numbers or date strings.
NumDays Integer number of days from start date. Enter a negative integer for dates before start date.

Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

Note When using the 30/360 day-count basis, it is not always possible to find the exact date NumDays number of days away because of a known discontinuity in the method of counting days. A warning is displayed if this occurs.

NumDays = daysadd(StartDate, NumDays, Basis) returns a date NumDays number of days away from StartDate, using the given day-count basis.

```
NewDate = daysadd('01-Feb-2004', 31)
NewDate =
        7 3 2 0 0 9
datestr(NewDate)
ans =
03-Mar-2004
```

```
NewDate = daysadd('01-Feb-2004', 31, 1)
NewDate =
            7 3 2 0 0 8
datestr(NewDate)
ans =
02-Mar-2004
```


See Also
 daysdif

References

Stigum, Marca L. and Franklin Robinson, Money Market and Bond Calculations, Richard D. Irwin, 1996, ISBN 1-55623-476-7

Purpose Days between dates for any day-count basis

| Syntax | NumDays $=$ daysdif(StartDate, EndDate, Basis) | |
| :--- | :--- | :--- |
| Arguments | StartDate | Enter as serial date numbers or date strings. |
| EndDate | Enter as serial date numbers or date strings. | |
| | Basis | (Optional) Day-count basis of the instrument. A vector of |
| | integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), | |
| | $2=$ actual/360, $3=$ actual/365, $4=30 / 360$ (PSA), | |
| | $5=30 / 360$ (ISDA), $6=30 / 360$ (European), | |
| | $7=$ actual/365 (Japanese). | |

Any input argument can contain multiple values, but if so, the other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an n-row character array of date strings or a single date. NumDays is then an n-by- 1 vector of numbers.

Description NumDays = daysdif(StartDate, EndDate, Basis) returns the number of days between dates StartDate and EndDate using the given day-count basis.

 Enter dates as serial date numbers or date strings.This function is a helper function for the bond pricing and yield functions. It is designed to make the code more readable and to eliminate redundant calls within if statements.

```
NumDays = daysdif('3/1/99', '3/1/00', 1)
NumDays =
    360
MoreDays = ['3/1/2001'; '3/1/2002'; '3/1/2003'];
NumDays = daysdif('3/1/98', MoreDays)
NumDays =
    1096
    1461
    1826
```

See Also
datenum, days360, days365, daysact, daysadd, wrkdydif, yearfrac

daysdif

References
Stigum, Marca L. and Franklin Robinson, Money Market and Bond Calculations, Richard D. Irwin, 1996, ISBN 1-55623-476-7

Purpose

Syntax

Arguments

Description

Examples

Decimal to thirty-second quotation
[OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy)

InNumber Input number as a decimal fraction.
Accuracy (Optional) Rounding. Default $=1$, round down to nearest thirty second. Other values are 2 (nearest half), 4 (nearest quarter) and 10 (nearest decile).
[OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy) changes a decimal price quotation for a bond or bond future to a fraction with a denominator of 32 .

OutNumber is InNumber rounded downward to the closest integer.
Fractions is the fractional part in units of thirty-second with accuracy as prescribed by the input Accuracy.

Two bonds are quoted with decimal prices of 101.78 and 102.96. Convert these prices to fractions with a denominator of 32 .

```
InNumber = [101.78; 102.96];
[OutNumber, Fractions] = dec2thirtytwo(InNumber)
OutNumber =
    101
    102
Fractions =
    25
    31
```


See Also

thirtytwo2dec

depfixdb

Purpose Fixed declining-balance depreciation schedule

Purpose General declining-balance depreciation schedule

| Syntax | Depreciation $=$ depgendb(Cost, Salvage, Life, Factor) | |
| :--- | :--- | :--- |
| Arguments | Cost | Cost of the asset. |
| Salvage | Estimated salvage value of the asset. | |
| | Life | Number of periods over which the asset is depreciated. |
| | Factor | Depreciation factor. Factor $=2$ uses the
 double-declining-balance method. |

Description Depreciation = depgendb(Cost, Salvage, Life, Factor) calculates the declining-balance depreciation for each period.

Examples
A car is purchased for $\$ 11,000$ and is to be depreciated over five years. The estimated salvage value is $\$ 1000$. Using the double-declining-balance method, the function calculates the depreciation for each year and returns the remaining depreciable value at the end of the life of the car.

```
    Depreciation = depgendb(11000, 1000, 5, 2)
returns
Depreciation =
    4400.00 2640.00 1584.00 950.40 425.60
```

See Also depfixdb, deprdv, depsoyd, depstln
Purpose Remaining depreciable value

```
Syntax Value = deprdv(Cost, Salvage, Accum)
```

Arguments Cost Cost of the asset.

Description Value $=$ deprdv(Cost, Salvage, Accum) returns the remaining depreciable value for an asset.

Examples The cost of an asset is $\$ 13,000$ with a life of 10 years. The salvage value is $\$ 1000$. First find the accumulated depreciation with the straight-line depreciation function, depstln. Then find the remaining depreciable value after six years.

```
Accum = depstln(13000, 1000, 10) * 6
Accum =
    7200.00
Value = deprdv(13000, 1000, 7200)
Value =
    4800.00
```

See Also depfixdb, depgendb, depsoyd, depstln

Purpose
Syntax Sum = depsoyd(Cost, Salvage, Life)
Arguments

Description

Examples
Sum of years' digits depreciation

Cost Cost of the asset.
Salvage Salvage value of the asset.
Life Depreciable life of the asset in years. life.

Sum = depsoyd(Cost, Salvage, Life) calculates the depreciation for an asset using the sum of years' digits method. Sum is a 1-by-Life vector of depreciation values with each element corresponding to a year of the asset's

The cost of an asset is $\$ 13,000$ with a life of 10 years. The salvage value of the asset is $\$ 1000$.

```
    Sum = depsoyd(13000, 1000, 10)'
```

returns
Sum =

$$
2181.82
$$

1963.64
1745.45
1527.27
1309.09
1090.91
872.73
654.55
436.36
218.18

See Also depfixdb, depgendb, deprdv, depstln
Purpose Straight-line depreciation schedule

| Syntax | Depreciation $=$ depstln(Cost, Salvage, Life) | |
| :--- | :--- | :--- |
| Arguments | Cost | Cost of the asset. |
| | Salvage | Salvage value of the asset. |
| | Life | Depreciable life of the asset in years. |

Description Depreciation $=$ depstln(Cost, Salvage, Life) calculates straight-line depreciation for an asset.

Examples The cost of an asset is $\$ 13,000$ with a life of 10 years. The salvage value of the asset is $\$ 1000$.

```
    Depreciation = depstln(13000, 1000, 10)
```

returns

```
        Depreciation =
```

 1200
 See Also
depfixdb, depgendb, deprdv, depsoyd

Purpose
Syntax

Arguments

CurveDates

Settle

Compounding (Optional) Output compounding. A scalar that sets the compounding frequency per year for annualizing the output zero rates. Allowed values are:
1 annual compounding
2 semiannual compounding (default)
3 compounding three times per year
4 quarterly compounding
6 bimonthly compounding
12 monthly compounding
365 daily compounding
-1 continuous compounding
Basis (Optional) Day-count basis for annualizing the output zero rates. $0=\mathrm{actual} /$ actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})$, $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).

Description [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle, Compounding, Basis) returns a zero curve given a discount curve and its maturity dates.

ZeroRates Column vector of decimal fractions. In aggregate, the rates in ZeroRates constitute a zero curve for the investment horizon represented by CurveDates. The zero rates are the yields to maturity on theoretical zero-coupon bonds.

CurveDates Column vector of maturity dates (as serial date numbers) that correspond to the zero rates. This vector is the same as the input vector CurveDates.

Examples Given discount factors DiscRates over a set of maturity dates CurveDates, and a settlement date Settle

```
DiscRates = [0.9996
    0.9947
    0.9896
    0.9866
    0.9826
    0.9786
    0.9745
    0.9665
    0.9552
    0.9466];
```

CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');

Set daily compounding for the output zero curve, on an actual/ 365 basis.

```
Compounding = 365;
Basis = 3;
```

Execute the function

```
[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,...
Settle, Compounding, Basis)
```

which returns the zero curve ZeroRates at the maturity dates CurveDates.

```
ZeroRates =
    0.0487
    0 . 0 5 1 0
    0.0523
    0.0524
    0.0530
    0.0526
    0.0530
    0.0532
    0 . 0 5 4 9
    0.0536
CurveDates =
    730796
    7 3 0 8 3 1
    730866
    730887
    7 3 0 9 1 4
    730943
    7 3 0 9 7 1
    731027
    731098
    731167
```

For readability, DiscRates and ZeroRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter DiscRates as shown, ZeroRates may differ due to rounding.

See Also

zero2disc and other functions for Term Structure of Interest Rates

Purpose Bank discount rate of a money market security

Description

Examples

See Also
References

```
Syntax
DiscRate = discrate(Settle, Maturity, Face, Price, Basis)
```

Arguments Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.
Face Redemption (par, face) value.
Price Price of the security.
Basis (Optional) Day-count basis of the instrument. A vector of integers. $0=$ actual/actual (default), $1=30 / 360$ (SIA), $2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360$ (PSA), $5=30 / 360$ (ISDA), $6=30 / 360$ (European), 7 = actual/365 (Japanese).
Settle Enter as serial date number or date string. Settle must be

DiscRate = discrate(Settle, Maturity, Face, Price, Basis) finds the bank discount rate of a security. The bank discount rate normalizes by the face value of the security (e.g., U. S. Treasury Bills) and understates the true yield earned by investors.

```
    DiscRate = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)
``` returns

DiscRate \(=\)
0.0501
a discount rate of \(5.01 \%\).
acrudisc, fvdisc, prdisc, ylddisc
Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 1.
Purpose Effective rate of return
Syntax Return = effrr(Rate, NumPeriods)

Arguments Rate Annual percentage rate. Enter as a decimal fraction.
NumPeriods Number of compounding periods per year, an integer.

Description Return = effrr(Rate, NumPeriods) calculates the annual effective rate of return. Compounding continuously returns Return equivalent to (e^Rate-1).

\section*{Examples}

Find the effective annual rate of return based on an annual percentage rate of \(9 \%\) compounded monthly.
```

    Return = effrr(0.09, 12)
    ```
returns
Return =
\[
0.0938 \text { or } 9.38 \%
\]

\section*{See Also}
nomrr

\section*{eomdate}

\section*{Purpose Last date of month}
```

Syntax
DayMonth = eomdate(Year, Month)

```

Description DayMonth = eomdate (Year, Month) returns the serial date number of the last date of the month for the given year and month. Enter Year as a four-digit integer; enter Month as an integer from 1 to 12.

Either input argument can contain multiple values, but if so, the other input must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. DayMonth is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date strings.

\section*{Examples}
```

DayMonth = eomdate(2001, 2)
DayMonth =
7 3 0 9 1 0
datestr(DayMonth)
ans =
28-Feb-2001
Year = [2002 2003 2004 2005];
DayMonth = eomdate(Year, 2)
DayMonth =
731275 731640 732006 732371
datestr(DayMonth)
ans =
28-Feb-2002
28-Feb-2003
29-Feb-2004
28-Feb-2005

```

\section*{See Also}
day, eomday, lbusdate, month, year

\section*{Purpose Last day of month}

\section*{Syntax Day = eomday (Year, Month)}

Description Day = eomday (Year, Month) returns the last day of the month for the given year and month. Enter Year as a four-digit integer; enter Month as an integer from 1 to 12.

Either input argument can contain multiple values, but if so, the other input must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Day is then a 1-by-n vector of days.

Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.

\section*{Examples}

Day \(=\) eomday \((2000,2)\)
Day =
29
See Also day, eomdate, month

Purpose Expected return and covariance from return time series
Syntax

Arguments

Description
[ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, DecayFactor, WindowLength)

RetSeries Return Series: number of observations (NUMOBS) by number of assets (NASSETS) matrix of equally spaced incremental return observations. The first row is the oldest observation, and the last row is the most recent.

DecayFactor (Optional) Controls how much less each observation is weighted than its successor. The \(k\) th observation back in time has weight DecayFactor^k. DecayFactor must lie in the range: 0 < DecayFactor <= 1 .

Default \(=1\), the equally weighted linear moving average model (BIS).

WindowLength (Optional) Number of recent observations in the computation. Default \(=\) NUMOBS.
[ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, DecayFactor, WindowLength) computes estimated expected returns, estimated covariance matrix, and the number of effective observations.

ExpReturn is a 1-by-NASSETS vector of estimated expected returns.
ExpCovariance is an NASSETS-by-NASSETS estimated covariance matrix. The standard deviations of the asset return processes are given by
```

STDVec = sqrt(diag(ExpCovariance))

```

The correlation matrix is
```

CorrMat = ExpCovariance./( STDVec*STDVec' )

```

NumEffobs is the number of effective observations = (1-DecayFactor^WindowLength)/(1-DecayFactor).

A smaller DecayFactor or WindowLength emphasizes recent data more strongly but uses less of the available data set.
```

Examples
RetSeries = [ 0.24 0.08
0.15 0.13
0.27 0.06
0.14 0.13 ];
DecayFactor = 0.98;
[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor)
ExpReturn =
0.1995 0.1002
ExpCovariance =
0.0032 -0.0017
-0.0017 0.0010

```

See Also cov, mean

\section*{fbusdate}

Purpose First business date of month
Syntax Date \(=\) fbusdate (Year, Month, Holiday, Weekend)
Arguments Year Enter as four-digit integer.
Month Enter as integer from 1 to 12.
Holiday (Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using date numbers improves performance.) The holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), then Weekend \(=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\).

Description Date \(=\) fbusdate (Year, Month, Holiday, Weekend) returns the serial date number for the first business date of the given year and month. Holiday specifies nontrading days.

Year and Month can contain multiple values. If one contains multiple values, the other must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date strings.

\section*{Examples Example 1:}
```

Date = fbusdate(2001, 11); datestr(Date)
ans =
01-Nov-2001
Year = [2002 2003 2004];
Date = fbusdate(Year, 11); datestr(Date)
ans =

```

01-Nov-2002
03-Nov-2003
01-Nov-2004
Example 2: You can indicate that Saturday is a business day by appropriately setting the Weekend argument.
```

Weekend = [1 0 0 0 0 0 0];

```

March 1, 2003, is a Saturday. Use fbusdate to check that this Saturday is actually the first business day of the month.
```

Date = datestr(fbusdate(2003, 3, [], Weekend))
Date =
01-Mar-2003

```

See Also
busdate, eomdate, holidays, isbusday, lbusdate

\section*{frac2cur}

Purpose Fractional currency value to decimal value
```

Syntax Decimal = frac2cur(Fraction, Denominator)

```

Description Decimal = frac2cur(Fraction, Denominator) converts a fractional currency value to a decimal value. Fraction is the fractional currency value input as a string, and Denominator is the denominator of the fraction.

\section*{Examples}

Decimal = frac2cur('12.1', 8)
returns
Decimal =
12.1250

See Also cur2frac, cur2str

\section*{Purpose Mean-variance efficient frontier}
Syntax \begin{tabular}{c}
[PortRisk, PortReturn, PortWts] \(=\) frontcon(ExpReturn, \\
\(\quad\) ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, \\
GroupBounds)
\end{tabular}

Arguments ExpReturn 1 by number of assets (NASSETS) vector specifying the expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of asset returns.
\begin{tabular}{ll}
NumPorts & \begin{tabular}{l}
(Optional) Number of portfolios generated along the \\
efficient frontier. Returns are equally spaced between \\
the maximum possible return and the minimum risk \\
point. If NumPorts is empty (entered as [], frontcon \\
computes 10 equally spaced points. When entering a \\
target rate of return (PortReturn), enter NumPorts as an \\
empty matrix [].
\end{tabular} \\
PortReturn & \begin{tabular}{l}
(Optional) Vector of length equal to the number of \\
portfolios (NPORTS) containing the target return values \\
on the frontier. If PortReturn is not entered or [],
\end{tabular} \\
AssetBounds & \begin{tabular}{l}
Numports equally spaced returns between the minimum \\
and maximum possible values are used.
\end{tabular} \\
& \begin{tabular}{l}
(Optional) 2-by-NASSETS matrix containing the lower and \\
upper bounds on the weight allocated to each asset in
\end{tabular} \\
& \begin{tabular}{l}
the portfolio. Default lower bound = all 0s (no \\
short-selling). Default upper bound = all 1s (any asset \\
may constitute the entire portfolio).
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
Groups & \begin{tabular}{l}
(Optional) Number of groups (NGROUPS) -by-NASSETS \\
\\
matrix specifying NGROUPS asset groups or classes. Each \\
row specifies a group. Groups \((i, j)=1\) (\(j\) th asset \\
belongs in the ith group). Groups \((i, j)=0(j\) th asset \\
not a member of the \(i\) th group).
\end{tabular} \\
GroupBounds & \begin{tabular}{l}
(Optional) NGROUPS-by-2 matrix specifying, for each \\
group, the lower and upper bounds of the total weights of \\
all assets in that group. Default lower bound \(=\) all 0s. \\
Default upper bound \(=\) all 1 s.
\end{tabular}
\end{tabular}

\section*{Description}
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, GroupBounds) returns the mean-variance efficient frontier with user-specified asset constraints, covariance, and returns. For a collection of NASSETS risky assets, computes a portfolio of asset investment weights that minimize the risk for given values of the expected return. The portfolio risk is minimized subject to constraints on the asset weights or on groups of asset weights.

PortRisk is an NPORTS-by- 1 vector of the standard deviation of each portfolio.
PortReturn is a NPORTS-by- 1 vector of the expected return of each portfolio.
PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. Each row represents a portfolio. The total of all weights in a portfolio is 1.
frontcon generates a plot of the efficient frontier if you invoke it without output arguments.

The asset returns are assumed to be jointly normal, with expected mean returns of ExpReturn and return covariance ExpCovariance. The variance of a portfolio with 1-by-NASSETS weights PortWts is given by PortVar = PortWts*ExpCovariance*PortWts'. The portfolio expected return is PortReturn \(=\operatorname{dot}(E x p R e t u r n\), PortWts).

\section*{Examples}

Given three assets with expected returns of
```

ExpReturn = [0.1 0.2 0.15];

```
and expected covariance of
\[
\begin{array}{rrrc}
\text { ExpCovariance }=\left[\begin{array}{rrr}
0.0100 & -0.0061 & 0.0042 \\
& -0.0061 & 0.0400
\end{array}\right. & -0.0252 \\
& 0.0042 & -0.0252 & 0.0225] ;
\end{array}
\]
compute the mean-variance efficient frontier for four points.
```

NumPorts = 4;
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts)
PortRisk =
0.0426
0.0483
0.1089
0.2000
PortReturn =
0.1569
0.1713
0.1856
0.2000
PortWts =
0.2134 0.3518 0.4348
0.0096 0.4352 0.5552
0 0.7128 0.2872
0 1.0000 0

```

See Also
ewstats, portopt, portstats

\section*{fvdisc}

\section*{Purpose Future value of discounted security}
```

Syntax FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

```
Arguments Settle Settlement date. Enter as serial date number or date string.
 Settle must be earlier than or equal to Maturity.
 Maturity Maturity date. Enter as serial date number or date string.
Price Price (present value) of the security.
Discount Bank discount rate of the security. Enter as decimal fraction.
Basis (Optional) Day-count basis of the instrument. A vector of
 integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA),
 \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\),
 \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European),
 7 = actual/365 (Japanese).
Description FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis) finds
the amount received at maturity for a fully vested security.
Examples Using this data
```

    Settle = '02/15/2001';
    Maturity = '05/15/2001';
    Price = 100;
    Discount = 0.0575;
    Basis = 2;
    FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)
    returns
FutureVal =
101.44

```
See Also acrudisc, discrate, prdisc, ylddisc
References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.

Purpose
Future value with fixed periodic payments

\section*{See Also}
fvvar, pvfix, pvvar
Purpose Future value of varying cash flow
Syntax FutureVal = fvvar(CashFlow, Rate, IrrCFDates)
Arguments CashFlow A vector of varying cash flows. Include the initial investment asthe initial cash flow value (a negative number).
Rate Periodic interest rate. Enter as a decimal fraction.
IrrCFDates (Optional) For irregular (nonperiodic) cash flows, a vector ofdates on which the cash flows occur. Enter dates as serial datenumbers or date strings. Default assumes CashFlow containsregular (periodic) cash flows.
Description FutureVal = fvvar(CashFlow, Rate, IrrCFDates) returns the future valueof a varying cash flow.
ExamplesThis cash flow represents the yearly income from an initial investment of\(\$ 10,000\). The annual interest rate is \(8 \%\).
Year 1 \(\$ 2000\)
Year 2 \$1500
Year 3 \$3000
Year 4 \$3800
Year 5 \(\$ 5000\)

For the future value of this regular (periodic) cash flow
\[
\text { FutureVal = fvvar([-10000 } 2000150030003800 \text { 5000], 0.08) }
\]
returns
```

FutureVal =

```

An investment of \(\$ 10,000\) returns this irregular cash flow. The original investment and its date are included. The periodic interest rate is \(9 \%\).

\section*{Cash flow Dates}
(\$10000) January 12, 2000
\(\$ 2500\) February 14, 2001
\$2000 March 3, 2001
\(\$ 3000 \quad\) June 14, 2001
\$4000 December 1, 2001

To calculate the future value of this irregular (nonperiodic) cash flow
```

    CashFlow = [-10000, 2500, 2000, 3000, 4000];
    ```
 IrrCFDates = ['01/12/2000'
 '02/14/2001'
 '03/03/2001'
 '06/14/2001'
 '12/01/2001'];
 FutureVal = fvvar(CashFlow, 0.09, IrrCFDates)
returns
FutureVal =
170.66

\section*{See Also}
fvfix, irr, payuni, pvfix, pvvar

\section*{fwd2zero}

Purpose Zero curve given a forward curve

Arguments ForwardRates A number of bonds (NUMBONDS) by 1 vector of annualized implied forward rates, as decimal fractions. In aggregate, the rates in ForwardRates constitute an implied forward curve for the investment horizon represented by CurveDates. The first element pertains to forward rates from the settlement date to the first curve date.
\begin{tabular}{|c|c|}
\hline CurveDates & A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the forward rates. \\
\hline Settle & A serial date number that is the common settlement date for the forward rates. \\
\hline \multirow[t]{9}{*}{Compounding} & (Optional) Output compounding. A scalar that sets the compounding frequency per year for annualizing the output zero rates. Allowed values are: \\
\hline & 1 annual compounding \\
\hline & 2 semiannual compounding (default) \\
\hline & 3 compounding three times per year \\
\hline & 4 quarterly compounding \\
\hline & 6 bimonthly compounding \\
\hline & 12 monthly compounding \\
\hline & 365 daily compounding \\
\hline & -1 continuous compounding \\
\hline Basis & (Optional) Output day-count basis for annualizing the output zero rates. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\) actual \(/ 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese). \\
\hline
\end{tabular}

\section*{Description}

\section*{Examples}
[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates, Settle, Compounding, Basis) returns a zero curve given an implied forward rate curve and its maturity dates.

ZeroRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the rates in ZeroRates constitute a zero curve for the investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates. This vector is the same as the input vector CurveDates.

Given an implied forward rate curve over a set of maturity dates, a settlement date, and a compounding rate, compute the zero curve.
```

ForwardRates = [0.0469
0.0519
0.0549
0.0535
0.0558
0.0508
0.0560
0.0545
0.0615
0.0486];

```
CurveDates = [datenum('06-Nov-2000')
 datenum('11-Dec-2000')
 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');
Compounding = 1;

Execute the function

\section*{fwd2zero}
[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,... Settle, Compounding)
which returns the zero curve ZeroRates at the maturity dates CurveDates.

> ZeroRates \(=\)
> 0.0469
> 0.0515
> 0.0531
> 0.0532
> 0.0538
> 0.0532
> 0.0536
> 0.0539
> 0.0556
> 0.0543

CurveDates =
730796
730831
730866
730887
730914
730943
730971
731027
731098
731167
For readability, ForwardRates and ZeroRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter ForwardRates as shown, ZeroRates may differ due to rounding.

\section*{See Also}
zero2fwd and other functions for Term Structure of Interest Rates

Purpose
Syntax
Arguments
Description

Description

Examples

High, low, open, close chart
```

highlow(High, Low, Close, Open, Color)
Handles = highlow(High, Low, Close, Open, Color)

```

High High prices for a security. A column vector.
Low Low prices for a security. A column vector.
Close Closing prices for a security. A column vector.
Open (Optional) Opening prices for a security. A column vector. To specify Color when Open is unknown, enter Open as an empty matrix [].

Color (Optional) Vertical line color. A string. MATLAB supplies a default color if none is specified. The default color differs depending on the background color of the figure window. See ColorSpec in the MATLAB documentation for color names.
highlow(High, Low, Close, Open, Color) plots the high, low, opening, and closing prices of an asset. Plots are vertical lines whose top is the high, bottom is the low, open is a short horizontal tick to the left, and close is a short horizontal tick to the right.

Handles = highlow(High, Low, Close, Open, Color) plots the figure and returns the handles of the lines.

The high, low, and closing prices for an asset are stored in equal-length vectors AssetHi, AssetLo, and AssetCl respectively
highlow(AssetHi, AssetLo, AssetCl, [], 'cyan')
plots the price data using cyan lines.
See Also bolling, candle, dateaxis, movavg, pointfig

\section*{holidays}
\begin{tabular}{|c|c|}
\hline Purpose & Holidays and nontrading days \\
\hline Syntax & Holidays = holidays(StartDate, EndDate) \\
\hline \multirow[t]{2}{*}{Arguments} & StartDate Start date vector. Enter as serial date numbers or date strings. \\
\hline & EndDate \(\quad\) End date vector. Enter as serial date numbers or date strings. \\
\hline \multirow[t]{3}{*}{Description} & Holidays = holidays(StartDate, EndDate) returns a vector of serial date numbers corresponding to the holidays and nontrading days between StartDate and EndDate, inclusive. \\
\hline & Holidays = holidays returns a vector of serial date numbers corresponding to all holidays and nontrading days. \\
\hline & As shipped, this function contains all holidays and special nontrading days for the New York Stock Exchange between 1950 and 2030, inclusive (681 dates). You can edit the holidays.m file to contain your own holidays and nontrading days. By definition, holidays and nontrading days are those that occur on weekdays. \\
\hline \multirow[t]{12}{*}{Examples} & Holidays = holidays('jan 12001 ', 'jun 23 2001') \\
\hline & returns \\
\hline & Holidays = \\
\hline & 730852 \\
\hline & 730901 \\
\hline & 730954 \\
\hline & 730999 \\
\hline & which are the serial date numbers for \\
\hline & 01-Jan-2001 (New Year's Day) \\
\hline & 19-Feb-2001 (President's Day) \\
\hline & 13-Apr-2001 (Good Friday) \\
\hline & 28-May-2001 (Memorial Day) \\
\hline See Also & busdate, fbusdate, isbusday, lbusdate \\
\hline
\end{tabular}
Purpose Hour of date or time
Syntax Hour = hour(Date)
Description Hour \(=\) hour (Date) returns the hour of the day given a serial date number ora date string.
Examples Hour \(=\) hour (730473.5584278936)
or
Hour = hour('19-dec-1999, 13:24:08.17')
returns
Hour =13
See Also datevec, minute, second
Purpose Internal rate of return
Syntax

Return = irr(CashFlow)
Description
ExamplesThis cash flow represents the yearly income from an initial investment of\(\$ 100,000\) :
Year 1 \$10,000
Year 2 \$20,000
Year 3 \$30,000
Year 4 \$40,000
Year 5 \$50,000
To calculate the internal rate of return on the investment
Return \(=\operatorname{irr}([-100000 \quad 10000 \quad 20000 \quad 30000 \quad 40000\) 50000])
returns
Return =
0.1201 (12.01\%)
See Also effrr, mirr, nomrr, taxedrr, xirr
References

Purpose
Syntax Busday = isbusday (Date, Holiday, Weekend)
Arguments Date Date(s) being checked. Enter as a serial date number or date string. Date can contain multiple dates, but they must all be in the same format.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using date numbers improves performance.) The holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), then Weekend \(=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\).

\section*{Description}

\section*{Examples}

True for dates that are business days wend (defait),

Busday = isbusday(Date, Holiday, Weekend) returns logical true(1) if Date is a business day and logical false (0) otherwise.

Example 1:
```

Busday = isbusday('16 jun 2001')
Busday =
0
Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];
Busday = isbusday(Date)
Busday =

```
 1
 1
 0

Example 2: Set June 21, 2003 (a Saturday) as a business day.
```

Weekend = [1 0 0 0 0 0 0];

```
 isbusday('June 21, 2003', [], Weekend)
 ans \(=\)

1

See Also busdate, fbusdate, holidays, lbusdate

Purpose

\section*{Syntax}

Arguments

Description

\section*{Examples}

Last business date of month
```

Date = lbusdate(Year, Month, Holiday, Weekend)

```

Year Enter as four-digit integer.
Month Enter as integer from 1 to 12.
Holiday (Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using date numbers improves performance.) The holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), then Weekend \(=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]\).

Date = lbusdate(Year, Month, Holiday, Weekend) returns the serial date number for the last business date of the given year and month. Holiday specifies nontrading days.

Year and Month can contain multiple values. If one contains multiple values, the other must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1 -by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date strings.

Example 1.
```

Date = lbusdate(2001, 5)
Date =
7 3 1 0 0 2
datestr(Date)

```

\section*{Ibusdate}
```

ans =
31-May-2001
c
ans =
31-May-2001
31-May-2002
30-May-2003

```

Example 2: You can indicate that Saturday is a business day by appropriately setting the Weekend argument.
```

Weekend = [1 0 0 0 0 0 0];

```

May 31, 2003, is a Saturday. Use lbusdate to check that this Saturday is actually the last business day of the month.
```

Date = datestr(lbusdate(2003, 5, [], Weekend))
Date =
31-May-2003

```

\section*{See Also}
busdate, eomdate, fbusdate, holidays, isbusday

\section*{Purpose Date of last occurrence of weekday in month}
```

Syntax LastDate = lweekdate(Weekday, Year, Month, NextDay)

```

Arguments Weekday Weekday whose date you seek. Enter as an integer from 1 through 7:

1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday
Year Year. Enter as a four-digit integer.
Month Month. Enter as an integer from 1 through 12.
NextDay (Optional) Weekday that must occur after Weekday in the same week. Enter as an integer from 0 through 7 , where \(0=\) ignore (default) and 1 through 7 are as for Weekday.

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. LastDate is then a 1-by-n vector of date numbers.

Description LastDate \(=\) lweekdate (Weekday, Year, Month, NextDay) returns the serial date number for the last occurrence of Weekday in the given year and month and in a week that also contains NextDay.

Use the function datestr to convert serial date numbers to formatted date strings.

\section*{Iweekdate}

\section*{Examples}

To find the last Monday in June 2001
```

LastDate = lweekdate(2, 2001, 6); datestr(LastDate)
ans =
25-Jun-2001

```

To find the last Monday in a week that also contains a Friday in June 2001 LastDate = lweekdate(2, 2001, 6, 6); datestr(LastDate) ans \(=\) 25-Jun-2001

To find the last Monday in May for 2001, 2002, and 2003
```

Year = [2001:2003];
LastDate = lweekdate(2, Year, 5)
LastDate =
730999 731363 731727
datestr(LastDate)
ans =
28-May-2001
27-May-2002
26-May-2003

```

See Also
eomdate, lbusdate, nweekdate

Purpose
Syntax
Arguments

\section*{Description}

\section*{Examples}

MATLAB serial date number to Excel serial date number
DateNum = m2xdate(MATLABDateNumber, Convention)

MATLABDateNumber A vector or scalar of MATLAB serial date numbers.
Convention (Optional) Excel date system. A vector or scalar. When Convention = 0 (default), the Excel 1900 date system is in effect. When Convention = 1, the Excel 1904 date system in used.

In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1, 1900 A.D. In the Excel 1904 date system, date number 0 is January 1, 1904 A.D.

Vector arguments must have consistent dimensions.
DateNum = m2xdate(MATLABDateNumber, Convention) converts MATLAB serial date numbers to Excel serial date numbers. MATLAB date numbers start with \(1=\) January 1, 0000 A.D., hence there is a difference of 693961 relative to the 1900 date system, or 695422 relative to the 1904 date system. This function is useful with MATLAB Excel Link.

Given MATLAB date numbers for Christmas 2001 through 2004
DateNum = datenum(2001:2004, 12, 25)

DateNum =
\(731210 \quad 731575 \quad 731940 \quad 732306\)
convert them to Excel date numbers in the 1904 system
```

    ExDate = m2xdate(DateNum, 1)
    ExDate =
        35788
                            3 6 1 5 3
                            36518
                            36884
    ```
or the 1900 system
```

ExDate = m2xdate(DateNum)
ExDate =

| 37250 | 37615 | 37980 | 38346 |
| :--- | :--- | :--- | :--- |

```

See Also datenum, datestr, x2mdate

Purpose

\section*{Syntax}

Description

Examples
Minute \(=\) minute(731204.5591223380)
or
Minute = minute('19-dec-2001, 13:25:08.17')
returns
Minute =
25
See Also
datevec, hour, second

\section*{Purpose Modified internal rate of return}
```

Syntax Return = mirr(CashFlow, FinRate, Reinvest)

```
Arguments CashFlow Vector of cash flows. The first entry is the initial investment.

FinRate Finance rate for negative cash flow values. Enter as decimal fraction.

Reinvest Reinvestment rate for positive cash flow values, as a decimal fraction.

Description Return \(=\) mirr(CashFlow, FinRate, Reinvest) calculates the modified internal rate of return for a series of periodic cash flows. This function calculates only positive rates of return; for negative rates of return, Return \(=0\).

\section*{Examples}

This cash flow represents the yearly income from an initial investment of \(\$ 100,000\). The finance rate is \(9 \%\) and the reinvestment rate is \(12 \%\).

Year \(1 \quad \$ 20,000\)
Year \(2 \quad(\$ 10,000)\)
Year \(3 \quad \$ 30,000\)
Year \(4 \quad \$ 38,000\)
Year \(5 \quad \$ 50,000\)

To calculate the modified internal rate of return on the investment
Return \(=\operatorname{mirr}([-10000020000-10000300003800050000], 0.09, \ldots\) 0.12)
returns
Return =
0.0832 (8.32\%)

See Also
References
annurate, effrr, irr, nomrr, pvvar, xirr
Brealey and Myers, Principles of Corporate Finance, Chapter 5

Purpose
Syntax [MonthNum, MonthString] = month(Date)
Description

Examples
or
[MonthNum, MonthString] = month('05-Sep-1999')
returns
MonthNum =
9

MonthString =
Sep
See Also
datevec, day, year

\section*{Purpose Number of whole months between dates}
```

Syntax Months = months(StartDate, EndDate, EndMonthFlag)

```

Arguments

Description

\section*{Examples}
```

Months = months('may 31 2000', 'jun 30 2000', 1)
Months =
1
Months = months('may 31 2000','jun 30 2000', 0)
Months =
0
Dates = ['mar 31 2002'; 'apr 30 2002'; 'may 31 2002'];
Months = months(Dates, 'jun 30 2002')
Months =
3
2
1

```

See Also yearfrac
\begin{tabular}{|c|c|}
\hline Purpose & Leading and lagging moving averages chart \\
\hline Syntax & \begin{tabular}{l}
movavg(Asset, Lead, Lag, Alpha) \\
[Short, Long] = movavg(Asset, Lead, Lag, Alpha)
\end{tabular} \\
\hline \multirow[t]{4}{*}{Arguments} & Asset Security data, usually a vector of time-series prices. \\
\hline & Lead Number of samples to use in leading average calculation. A positive integer. Lead must be less than or equal to Lag. \\
\hline & Lag Number of samples to use in the lagging average calculation. A positive integer. \\
\hline & \begin{tabular}{l}
Alpha \\
(Optional) Control parameter that determines the type of moving averages. \(0=\) simple moving average (default), \(0.5=\) square root weighted moving average, \(1=\) linear moving average, \(2=\) square weighted moving average, etc. To calculate the exponential moving average, set Alpha ='e'.
\end{tabular} \\
\hline \multirow[t]{2}{*}{Description} & movavg(Asset, Lead, lag, Alpha) plots leading and lagging moving averages. \\
\hline & [Short, Long] = movavg(Asset, Lead, lag, Alpha) returns the leading Short and lagging Long moving average data without plotting it. \\
\hline \multirow[t]{3}{*}{Examples} & If Asset is a vector of stock price data \\
\hline & movavg(Asset, 3, 20, 1) \\
\hline & plots linear three-sample leading and 20-sample lagging moving averages. \\
\hline See Also & bolling, candle, dateaxis, highlow, pointfig \\
\hline
\end{tabular}
Purpose Nominal rate of return
Syntax Return = nomrr(Rate, NumPeriods)
Arguments Rate Effective annual percentage rate. Enter as a decimal fraction.NumPeriods Number of compounding periods per year, an integer.
Description Return \(=\) nomrr (Rate, NumPeriods) calculates the nominal rate of return.
Examples To find the nominal annual rate of return based on an effective annual percentage rate of \(9.38 \%\) compounded monthly
Return \(=\) nomrr(0.0938, 12)
returns
Return =

\[
0.0900(9.0 \%)
\]
See Also effrr, irr, mirr, taxedrr, xirr

Purpose
Syntax
Description

\section*{Examples}

Datenum = now
Datenum =
730695.5942469908 (on July 28, 2000 at 2:15 PM)

See Also date, datenum, today

\section*{nweekdate}

\section*{Purpose Date of specific occurrence of weekday in month}

Syntax
Arguments

Description

Date \(=\) nweekdate(\(n\), Weekday, Year, Month, Same)
\(\mathrm{n} \quad\) Nth occurrence of the weekday in a month. Enter as integer from 1 through 5.

Weekday Weekday whose date you seek. Enter as integer from 1 through 7.
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday
Year Year. Enter as a four-digit integer.
Month Month. Enter as an integer from 1 through 12.
Same (Optional) Weekday that must occur in the same week with Weekday. Enter as an integer from 0 through 7 , where \(0=\) ignore (default) and 1 through 7 are as for Weekday.

Date \(=\) nweekdate (\(n\), Weekday, Year, Month, Same) returns the serial date number for the specific occurrence of the weekday in the given year and month, and in a week that also contains the weekday Same.

If \(n\) is larger than the last occurrence of Weekday, Date \(=0\).
Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date strings.

\section*{Examples}
```

Date = nweekdate(1, 5, 2001, 5); datestr(Date)
ans =
03-May-2001

```

To find the first Thursday in a week that also contains a Wednesday in May 2001
```

Date = nweekdate(2, 5, 2001, 5, 4); datestr(Date)
ans =

```
10-May-2001

To find the third Monday in February for 2001, 2002, and 2003
```

Year = [2001:2003];
Date = nweekdate(3, 2, Year, 2)
Date =
730901 731265 731629
datestr(Date)
ans =
19-Feb-2001
18-Feb-2002
17-Feb-2003

```

\section*{See Also}
Purpose Option profit
```

Syntax Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)

```

Arguments

Description

Examples
```

AssetPrice Asset price.
Strike Strike or exercise price.
Cost Cost of the option.
PosFlag Option position. $0=$ long, $1=$ short.
OptType Option type. $0=$ call option, $1=$ put option.
Profit $=$ opprofit(AssetPrice, Strike, Cost, PosFlag, OptType) returns the profit of an option.
Buying (going long on) a call option with a strike price of $\$ 90$ on an underlying asset with a current price of $\$ 100$ for a cost of $\$ 4$

```
```

    Profit = opprofit(100, 90, 4, 0, 0)
    ```
 Profit = opprofit(100, 90, 4, 0, 0)
returns
```

```
Profit =
```

Profit =
6.00

```
a profit of \(\$ 6\) if the option is exercised under these conditions.

\section*{See Also}
binprice, blsprice

Purpose
Periodic payment given number of advance payments
\begin{tabular}{|c|c|}
\hline Syntax & Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue, Advance) \\
\hline \multirow[t]{5}{*}{Arguments} & Rate Lending or borrowing rate per period. Enter as a decimal fraction. Must be greater than or equal to 0 . \\
\hline & NumPeriods Number of periods in the life of the instrument. \\
\hline & PresentValue Present value of the instrument. \\
\hline & FutureValue Future value or target value to be attained after NumPeriods periods. \\
\hline & Advance Number of advance payments. If the payments are made at the beginning of the period, add 1 to Advance. \\
\hline Description & \[
\begin{aligned}
& \text { Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue, } \\
& \text { Advance) returns the periodic payment given a number of advance payments. }
\end{aligned}
\] \\
\hline \multirow[t]{6}{*}{Examples} & The present value of a loan is \(\$ 1000.00\) and it will be paid in full in 12 months. The annual interest rate is \(10 \%\) and three payments are made at closing time. Using this data \\
\hline & Payment = payadv (0.1/12, 12, 1000, 0, 3) \\
\hline & returns \\
\hline & Payment \(=\) \\
\hline & 85.94 \\
\hline & for the periodic payment. \\
\hline See Also & amortize, payodd, payper \\
\hline
\end{tabular}

\section*{Purpose Payment of loan or annuity with odd first period}
```

Syntax
Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)

```

Arguments rate Interest rate per period. Enter as a decimal fraction.
NumPeriods Number of periods in the life of the instrument.
PresentValue Present value of the instrument.
FutureValue Future value or target value to be attained after NumPeriods periods.

Days Actual number of days until the first payment is made.
Description Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days) returns the payment for a loan or annuity with an odd first period.

\section*{Examples}

A two-year loan for \(\$ 4000\) has an annual interest rate of \(11 \%\). The first payment will be made in 36 days. To find the monthly payment
```

    Payment = payodd(0.11/12, 24, 4000, 0, 36)
    ```
returns
Payment =
186.77

\section*{See Also}
amortize, payadv, payper

Purpose
\begin{tabular}{|c|c|}
\hline Syntax & Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due) \\
\hline \multirow[t]{5}{*}{Arguments} & Rate Interest rate per period. Enter as a decimal fraction. \\
\hline & NumPeriods Number of payment periods in the life of the instrument. \\
\hline & PresentValue Present value of the instrument. \\
\hline & FutureValue (Optional) Future value or target value to be attained after NumPeriods periods. Default \(=0\). \\
\hline & Due (Optional) When payments are due: \(0=\) end of period (default), or 1 = beginning of period. \\
\hline Description & Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due) returns the periodic payment of a loan or annuity. \\
\hline \multirow[t]{3}{*}{Examples} & Find the monthly payment for a three-year loan of \(\$ 9000\) with an annual interest rate of \(11.75 \%\) \\
\hline & ```
 Payment = payper(0.1175/12, 36, 9000, 0, 0)
returns
``` \\
\hline & Payment = \\
\hline
\end{tabular}

Description Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due) returns the periodic payment of a loan or annuity.

Find the monthly payment for a three-year loan of \(\$ 9000\) with an annual interest rate of \(11.75 \%\)
returns
Payment =
297.86

\section*{See Also}

Periodic payment of loan or annuity
```

Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)

```

NumPeriods Number of payment periods in the life of the instrument. PresentValue Present value of the instrument.

FutureValue (Optional) Future value or target value to be attained after NumPeriods periods. Default \(=0\).
(Optional) When payments are due: \(0=\) end of period (default), or \(1=\) beginning of period.

\section*{payuni}
\begin{tabular}{ll} 
Purpose & Uniform payment equal to varying cash flow \\
Syntax & \begin{tabular}{l} 
Series \(=\) payuni(CashFlow, Rate)
\end{tabular} \\
Arguments & CashFlow \(\quad\)\begin{tabular}{l} 
A vector of varying cash flows. Include the initial investment \\
as the initial cash flow value (a negative number).
\end{tabular} \\
& Periodic interest rate. Enter as a decimal fraction.
\end{tabular}

\section*{Purpose \\ Linear inequalities for individual asset allocation}
```

Syntax
[A,b] = pcalims(AssetMin, AssetMax, NumAssets)

```

Arguments AssetMin Scalar or NASSETS vector of minimum allocations in each asset. NaN indicates no constraint.

AssetMax Scalar or NASSETS vector of maximum allocations in each asset. NaN indicates no constraint.

NumAssets (Optional) Number of assets. Default = length of AssetMin or AssetMax.

\section*{Description}

\section*{Examples}
[A,b] = pcalims(AssetMin, AssetMax, NumAssets) specifies the lower and upper bounds of portfolio allocations in each of NumAssets available asset investments.

A is a matrix and b a vector such that A *PortWts ' <= b , where PortWts is a 1-by-NASSETS vector of asset allocations.

If pcalims is called with fewer than two output arguments, the function returns A concatenated with b [A, b].

Set the minimum weight in every asset to 0 (no short-selling), and set the maximum weight of IBM to 0.5 and CSCO to 0.8 , while letting the maximum weight in INTC float.
Asset IBM INTC CSCO
\(\begin{array}{llll}\text { Min. Wt. } & 0 & 0 & 0\end{array}\)
\(\begin{array}{lll}\text { Max. Wt. } & 0.5 & 0.8\end{array}\)
```

AssetMin = 0
AssetMax = [0.5 NaN 0.8]
[A,b] = pcalims(AssetMin, AssetMax)
A =
1 0 0
0 0 1
-1 0}
0 -1 0
0 0
b =
0.5000
0.8000
0
0
0

```

Portfolio weights of \(50 \%\) in IBM and \(50 \%\) in INTC satisfy the constraints.
Set the minimum weight in every asset to 0 and the maximum weight to 1 .
\begin{tabular}{llll} 
Asset & IBM & INTC & CSCO \\
Min. Wt. & 0 & 0 & 0 \\
Max. Wt. & 1 & 1 & 1 \\
AssetMin \(=\) & 0 & & \\
AssetMax \(=1\) & & \\
NumAssets \(=3\)
\end{tabular}
```

[A,b] = pcalims(AssetMin, AssetMax, NumAssets)
A =
1 0 0
0 1 0
0 0
-1 0}
0
0 0 -1
b =
1
1
1
0
0
0

```

Portfolio weights of \(50 \%\) in IBM and \(50 \%\) in INTC satisfy the constraints.

Purpose Linear inequalities for asset group comparison constraints
```

Syntax [A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

```

Arguments GroupA Number of groups (NGROUPS) by number of assets (NASSETS) GroupB specifications of groups to compare. Each row specifies a group. For a specific group, \(\operatorname{Group}(i, j)=1\) if the group contains asset j ; otherwise, \(\operatorname{Group}(\mathrm{i}, \mathrm{j})=0\).
AtoBmin Scalar or NGROUPS-long vectors of minimum and maximum AtoBmax ratios of allocations in GroupA to allocations in GroupB. NaN indicates no constraint between the two groups. Scalar bounds are applied to all group pairs. The total number of assets allocated to GroupA divided by the total number of assets allocated to GroupB is \(>=\) AtoBmin and \(<=\) AtoBmax.
 ratio of allocations in one group to allocations in another group is at least AtoBmin to 1 and at most AtoBmax to 1 . Comparisons can be made between an arbitrary number of group pairs NGROUPS comprising subsets of NASSETS available investments.
\(A\) is a matrix and \(b\) a vector such that \(A * P o r t W t s s^{\prime}<=b\), where PortWts is a 1-by-NASSETS vector of asset allocations.

If pcgcomp is called with fewer than two output arguments, the function returns A concatenated with b [A, b].

\section*{Examples}
\begin{tabular}{llll} 
Asset & INTC & XOM & RD \\
Region & North America & North America & Europe \\
Sector & Technology & Energy & Energy
\end{tabular}
\begin{tabular}{lll} 
Group & Min. Exposure & Max. Exposure \\
North America & 0.30 & 0.75 \\
Europe & 0.10 & 0.55 \\
Technology & 0.20 & 0.50 \\
Energy & 0.20 & 0.80
\end{tabular}

Make the North American energy sector compose exactly 20\% of the North American investment.
```

% INTC XOM RD
GroupA = [0 1 0]; % North American Energy
GroupB = [1 1 1 0]; % North America
AtoBmin = 0.20;
AtoBmax = 0.20;
[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)
A =

0.2000	-0.8000	0
-0.2000	0.8000	0

b =
0
0

```

Portfolio weights of \(40 \%\) for INTC, \(10 \%\) for XOM, and \(50 \%\) for RD satisfy the constraints.

\section*{pcglims}

Purpose Linear inequalities for asset group minimum and maximum allocation
Syntax \(\quad[\mathrm{A}, \mathrm{b}]=\) pcglims(Groups, GroupMin, GroupMax)
Arguments Groups Number of groups (NGROUPS) by number of assets (NASSETS) specification of which assets belong to which group. Each row specifies a group. For a specific group, \(\operatorname{Group}(i, j)=1\) if the group contains asset j ; otherwise, \(\operatorname{Group}(\mathrm{i}, \mathrm{j})=0\).
GroupMin Scalar or NGROUPS-long vectors of minimum and maximum GroupMax combined allocations in each group. NaN indicates no constraint. Scalar bounds are applied to all groups.

\section*{Description}
[A,b] = pcglims(Groups, GroupMin, GroupMax) specifies minimum and maximum allocations to groups of assets. An arbitrary number of groups, NGROUPS, comprising subsets of NASSETS investments, is allowed.
\(A\) is a matrix and \(b\) a vector such that \(A * P o r t W t s '<=b\), where PortWts is a 1-by-NASSETS vector of asset allocations.

If pcglims is called with fewer than two output arguments, the function returns A concatenated with b [A, b].

\section*{Examples}
\begin{tabular}{lll} 
Asset & INTC & XOM \\
Region & North America & North America \\
Sector & Technology & Energy \\
& & \\
Group & Min. Exposure & Max. Exposure \\
North America & 0.30 & 0.75 \\
Europe & 0.10 & 0.55 \\
Technology & 0.20 & 0.50 \\
Energy & 0.50 & 0.50
\end{tabular}

Set the minimum and maximum investment in various groups.
```

% INTC XOM RD
Groups = [[1 1 0 ; % North America
0 0 1 ; % Europe
1 0 0 ; % Technology
0 1 1]; % Energy
GroupMin = [0.30
0.10
0.20
0.50];
GroupMax = [0.75
0.55
0.50
0.50];
[A,b] = pcglims(Groups, GroupMin, GroupMax)
A =

-1	-1	0
0	0	-1
-1	0	0
0	-1	-1
1	1	0
0	0	1
1	0	0
0	1	1

```
\[
\begin{aligned}
b= & \\
& -0.3000 \\
& -0.1000 \\
& -0.2000 \\
& -0.5000 \\
& 0.7500 \\
& 0.5500 \\
& 0.5000 \\
& 0.5000
\end{aligned}
\]

Portfolio weights of \(50 \%\) in INTC, \(25 \%\) in XOM, and \(25 \%\) in RD satisfy the constraints.

\author{
See Also pcalims, pcgcomp, pcpval, portcons, portopt
}

Purpose

\section*{Syntax}

Arguments

Description

\section*{Examples}

Linear inequalities for fixing total portfolio value
[A,b] = pcpval(PortValue, NumAssets)

PortValue Scalar total value of asset portfolio (sum of the allocations in all assets). PortValue \(=1\) specifies weights as fractions of the portfolio and return and risk numbers as rates instead of value.

NumAssets Number of available asset investments.
[A,b] = pcpval(PortValue, NumAssets) scales the total value of a portfolio of NumAssets assets to PortValue. All portfolio weights, bounds, return, and risk values except ExpReturn and ExpCovariance (see portopt) are in terms of PortValue.

A is a matrix and \(b\) a vector such that \(A * P o r t W t s s^{\prime}<=b\), where PortWts is a 1-by-NASSETS vector of asset allocations.

If pcpval is called with fewer than two output arguments, the function returns \(A\) concatenated with \(b[A, b]\).

Scale the value of a portfolio of three assets to 1 , so all return values are rates and all weight values are in fractions of the portfolio.
\(\begin{aligned} \text { PortValue } & =1 ; \\ \text { NumAssets } & =3 ;\end{aligned}\)
[A,b] = pcpval(PortValue, NumAssets)
\(A=\)
\(\begin{array}{lll}1 & 1 & 1\end{array}\)
\(\begin{array}{lll}-1 & -1 & -1\end{array}\)
b =
1
-1

Portfolio weights of \(40 \%, 10 \%\), and \(50 \%\) in the three assets satisfy the constraints.

\section*{See Also}
pcalims, pcgcomp, pcglims, portcons, portopt

Purpose
Syntax pointfig(Asset)
Description

See Also
bolling, candle, dateaxis, highlow, movavg

\section*{portalloc}

Purpose
Optimal capital allocation to efficient frontier portfolios
Syntax

Arguments

\section*{Description}
> [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, RisklessRate, BorrowRate, RiskAversion)
\begin{tabular}{ll} 
PortRisk & \begin{tabular}{l} 
Standard deviation of each risky asset efficient frontier \\
portfolio. A number of portfolios (NPORTS) by 1 vector.
\end{tabular} \\
PortReturn & \begin{tabular}{l} 
Expected return of each risky asset efficient frontier \\
portfolio. An NPORTS-by-1 vector.
\end{tabular} \\
PortWts & \begin{tabular}{l} 
Weights allocated to each asset. An NPORTS by number of \\
assets (NASSETS) matrix of weights allocated to each asset. \\
Each row represents an efficient frontier portfolio of risky \\
assets. Total of all weights in a portfolio is 1.
\end{tabular} \\
RisklessRate & \begin{tabular}{l} 
Risk-free lending rate. A decimal number.
\end{tabular} \\
BorrowRate & \begin{tabular}{l} 
(Optional) Borrowing rate. A decimal number. If borrowing \\
is not desired, or not an option, set to NaN (default).
\end{tabular} \\
RiskAversion & \begin{tabular}{l} 
(Optional) Coefficient of investor's degree of risk aversion.
\end{tabular} \\
& \begin{tabular}{l} 
Higher numbers indicate greater risk aversion. Typical \\
coefficients range between 2.0 and 4.0 (Default = 3).
\end{tabular}
\end{tabular}
[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, RisklessRate, BorrowRate, RiskAversion) computes the optimal risky portfolio, and the optimal allocation of funds between the risky portfolio and the risk-free asset.

RiskyRisk is the standard deviation of the optimal risky portfolio.
RiskyReturn is the expected return of the optimal risky portfolio.
RiskyWts is a 1-by-NASSETS vector of weights allocated to the optimal risky portfolio. The total of all weights in the portfolio is 1 .

RiskyFraction is the fraction of the complete portfolio allocated to the risky portfolio.
OverallRisk is the standard deviation of the optimal overall portfolio.

OverallReturn is the expected rate of return of the optimal overall portfolio. portalloc generates a plot of the optimal capital allocation if you invoke it without output arguments.

\section*{Examples}

Generate the efficient frontier from the asset data.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{ExpCovariance} & = 0.005 & -0.010 & 0.004 \\
\hline & -0.010 & 0.040 & -0.002 \\
\hline & 0.004 & -0.002 & \(0.023]\) \\
\hline
\end{tabular}
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... ExpCovariance);

Find the optimal risky portfolio and allocate capital. The risk free investment return is \(8 \%\), and the borrowing rate is \(12 \%\).
```

RisklessRate = 0.08;
BorrowRate = 0.12;
RiskAversion = 3;
[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ...
OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,...
PortWts, RisklessRate, BorrowRate, RiskAversion)
RiskyRisk =
0.1283
RiskyReturn =
0.1788
RiskyWts =
0.0265 0.6023 0.3712
RiskyFraction =
1.1898

```

\section*{portalloc}
OverallRisk =

\[
0.1527
\]

OverallReturn =

\[
0.1899
\]
See Also frontcon, portrand, portstats
References Bodie, Kane, and Marcus, Investments, Second Edition, Chapters 6 and 7.

\section*{Purpose}

Syntax ConSet = portcons(varargin)
Description
Portfolio constraints
```

ConSet = portcons(varargin)

```

Using linear inequalities, portcons generates a matrix of constraints for a portfolio of asset investments. The matrix ConSet is defined as ConSet \(=\left[\begin{array}{c}A \\ b\end{array}\right]\). \(A\) is a matrix and \(b\) a vector such that \(A * P o r t W t s{ }^{\prime}<=b\) sets the value, where PortWts is a 1 by number of assets (NASSETS) vector of asset allocations.

ConSet = portcons('ConstType', Data1, ..., DataN) creates a matrix ConSet, based on the constraint type ConstType, and the constraint parameters Data1, ..., DataN.

ConSet = portcons('ConstType1', Data11, ..., Data1N,'ConstType2', Data21, ..., Data2N, ...) creates a matrix ConSet, based on the constraint types ConstTypeN, and the corresponding constraint parameters DataN1, ..., DataNN.
\begin{tabular}{lll}
\hline Constraint Type & Description & Values \\
\hline Default & \begin{tabular}{l} 
All allocations are \\
\(>=0 ;\) no short selling \\
allowed. Combined \\
value of portfolio \\
allocations normalized \\
to 1.
\end{tabular} & \begin{tabular}{l} 
NumAssets (required). \\
Scalar representing \\
number of assets in \\
portfolio.
\end{tabular} \\
\hline PortValue & \begin{tabular}{l} 
Fix total value of \\
portfolio to PVal.
\end{tabular} & \begin{tabular}{l} 
PVal (required). Scalar \\
representing total value of \\
portfolio.
\end{tabular} \\
& & \begin{tabular}{l} 
NumAssets (required). \\
Scalar representing
\end{tabular} \\
& & \begin{tabular}{l} 
number of assets in \\
portfolio. See pcpval.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|ll}\hline \text { Constraint Type } & \text { Description } & \text { Values } \\ \hline \text { AssetLims } & \begin{array}{l}\text { Minimum and } \\ \text { maximum allocation } \\ \text { per asset. }\end{array} & \begin{array}{l}\text { AssetMin (required). Scalar } \\ \text { or vector of length NASSETS, } \\ \text { specifying minimum } \\ \text { allocation per asset. }\end{array} \\ & & \begin{array}{l}\text { AssetMax (required). Scalar } \\ \text { or vector of length NASSETS, } \\ \text { specifying maximum } \\ \text { allocation per asset. }\end{array} \\ & & \begin{array}{l}\text { NumAssets (optional). See } \\ \text { pcalims. }\end{array} \\ & & \begin{array}{l}\text { Groups (required). } \\ \text { GroupLims }\end{array} \\ & \begin{array}{l}\text { Minimum and } \\ \text { maximum allocations } \\ \text { masset group. }\end{array} & \begin{array}{l}\text { specifying which assets } \\ \text { belong to each group. }\end{array} \\ & & \begin{array}{l}\text { GroupMin (required). Scalar } \\ \text { or a vector of length }\end{array} \\ & & \begin{array}{l}\text { NGROUPS, specifying } \\ \text { minimum combined }\end{array} \\ \text { allocations in each group. }\end{array}\right\}\)
\(\left.\begin{array}{lll}\hline \text { Constraint Type } & \text { Description } & \text { Values } \\
\hline \text { GroupComparison } & \begin{array}{l}\text { Group-to-group } \\
\text { comparison } \\
\text { constraints. }\end{array} & \begin{array}{l}\text { GroupA (required). } \\
\text { NGROUPS-by-NASSETS matrix } \\
\text { specifying first group in the } \\
\text { comparison. }\end{array} \\
& & \begin{array}{l}\text { AtoBmin (required). Scalar } \\
\text { or vector of length NGROUPS } \\
\text { specifying minimum ratios }\end{array} \\
\text { of allocations in GroupA to } \\
\text { allocations in GroupB. }\end{array}\right]\)\begin{tabular}{l} 
AtoBmax (required). \\
\\
\end{tabular}

Examples
```

NumAssets = 3;
PVal = 1; % Scale portfolio value to 1.
AssetMin = 0;
AssetMax = [0.5 0.9 0.8];
GroupA = [llll}110]
GroupB = [lllll}0001]
AtoBmax = 1.5 % Value of assets in Group A at most 1.5 times value
% in group B.
ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',...
AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,...
AtoBmax, GroupB)
ConSet =

```
\begin{tabular}{rrrr}
1.0000 & 1.0000 & 1.0000 & 1.0000 \\
-1.0000 & -1.0000 & -1.0000 & -1.0000 \\
1.0000 & 0 & 0 & 0.5000 \\
0 & 1.0000 & 0 & 0.9000 \\
0 & 0 & 1.0000 & 0.8000 \\
-1.0000 & 0 & 0 & 0 \\
0 & -1.0000 & 0 & 0 \\
0 & 0 & -1.0000 & 0 \\
1.0000 & 1.0000 & -1.5000 & 0
\end{tabular}

Portfolio weights of \(30 \%\) in IBM, \(30 \%\) in HPQ, and \(40 \%\) in XOM satisfy the constraints.

See Also pcalims, pcgcomp, pcglims, pcpval, portopt

\section*{Purpose}

Portfolios on constrained efficient frontier
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, PortReturn, ConSet)} \\
\hline \multirow[t]{5}{*}{Arguments} & ExpReturn & 1 by number of assets (NASSETS) vector specifying the expected (mean) return of each asset. \\
\hline & ExpCovariance & NASSETS-by-NASSETS matrix specifying the covariance of the asset returns. \\
\hline & NumPorts & (Optional) Number of portfolios generated along the efficient frontier. Returns are equally spaced between the maximum possible return and the minimum risk point. If NumPorts is empty (entered as [ ]), computes 10 equally spaced points. \\
\hline & PortReturn & (Optional) Expected return of each portfolio. A number of portfolios (NPORTS) by 1 vector. If not entered or empty, NumPorts equally spaced returns between the minimum and maximum possible values are used. \\
\hline & ConSet & (Optional) Constraint matrix for a portfolio of asset investments, created using portcons. If not specified, a default is created. \\
\hline
\end{tabular}

\section*{Description}
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, PortReturn, ConSet) returns the mean-variance efficient frontier with user-specified covariance, returns, and asset constraints (ConSet). Given a collection of NASSETS risky assets, computes a portfolio of asset investment weights that minimize the risk for given values of the expected return. The portfolio risk is minimized subject to constraints on the total portfolio value, the individual asset minimum and maximum allocation, the asset group minimum and maximum allocation, or the asset group-to-group comparison.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.
PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.
PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. Each row represents a portfolio. The total of all weights in a portfolio is 1 .

If portopt is invoked without output arguments, it returns a plot of the efficient frontier.

Examples
Plot the risk-return efficient frontier of portfolios allocated among three assets. Connect 20 portfolios along the frontier having evenly spaced returns. By default, choose among portfolios without short-selling and scale the value of the portfolio to 1 .
ExpReturn \(=\left[\begin{array}{llll}0.1 & 0.20 .15\end{array}\right] ;\)
ExpCovariance \(=\left[\begin{array}{ccc}0.005 & -0.010 & 0.004 \\ & -0.010 & 0.040 \\ & 0.004 & -0.002 \\ & -0.002 & 0.023\end{array}\right] ;\)

NumPorts = 20;
portopt(ExpReturn, ExpCovariance, NumPorts)


Return the two efficient portfolios that have returns of \(16 \%\) and \(17 \%\). Limit to portfolios that have at least \(20 \%\) of the allocation in the first asset, and cap the total value in the first and third assets at \(50 \%\) of the portfolio.
```

ExpReturn = [0.1 0.2 0.15];
ExpCovariance = [0.005 -0.010 0.004
-0.010 0.040 -0.002
0.004 -0.002 0.023];
PortReturn = [0.16
0.17];
NumAssets = 3;
AssetMin = [0.20 NaN NaN];
Group = [l1 0 1];
GroupMax = 0.50;
ConSet = portcons('Default', NumAssets, 'AssetLims', AssetMin,...
NaN,'GroupLims', Group, NaN, GroupMax);
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], PortReturn, ConSet)
PortRisk =
0.0919
0.1138
PortReturn =
0.1600
0.1700
PortWts =

0.3000	0.5000	0.2000
0.2000	0.6000	0.2000

```

Purpose Randomized portfolio risks, returns, and weights
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points) portrand(Asset, Return, Points)} \\
\hline \multirow[t]{3}{*}{Arguments} & Asset & Matrix of time series data. Each row is an observation and each column represents a single security. \\
\hline & Return & (Optional) Row vector where each column represents the rate of return for the corresponding security in Asset. By default, Return is computed by taking the average value of each column of Asset. \\
\hline & Points & (Optional) Scalar that specifies how many random points should be generated. Default \(=1000\). \\
\hline Description & [PortR returns configu & ortReturn, PortWts] = portrand(Asset, Return, Points) sks, rates of return, and weights of random portfolio \\
\hline
\end{tabular}

PortRisk Points-by-1 vector of standard deviations.
PortReturn Points-by-1 vector of expected rates of return.
PortWts Points by number of securities matrix of asset weights. Each row of PortWts is a different portfolio configuration.
portrand(Asset, Return, Points) plots the points representing each portfolio configuration. It does not return any data to the MATLAB workspace.

\section*{See Also frontcon}

References Bodie, Kane, and Marcus, Investments, Chapter 7.

Purpose
Syntax

Arguments

Monte Carlo simulation of correlated asset returns
```

RetSeries = portsim(ExpReturn, ExpCovariance, NumObs, RetIntervals,
NumSim, Method)

```

ExpReturn 1 by number of assets (NASSETS) vector specifying the expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix of asset return covariances. ExpCovariance must be symmetric and positive semidefinite (no negative eigenvalues). The standard deviations of the returns are: ExpSigma = sqrt(diag(ExpCovariance)).

NumObs Positive scalar integer indicating the number of consecutive observations in the return time series. If NumObs is entered as the empty matrix [], the length of RetIntervals is used.

RetIntervals (Optional) Positive scalar or number of observations (NUMOBS) by 1 vector of interval times between observations. If RetIntervals is not specified, all intervals are assumed to have length 1.
NumSim
(Optional) Positive scalar integer indicating the number of simulated sample paths (realizations) of NUMOBS observations. Default = 1 (single realization of NUMOBS correlated asset returns).

\section*{portsim}

> Method (Optional) String indicating the type of Monte Carlo simulation:
> 'Exact' (default) generates correlated asset returns in which the sample mean and covariance match the input mean (ExpReturn) and covariance (ExpCovariance) specifications.
> 'Expected ' generates correlated asset returns in which the sample mean and covariance are statistically equal to the input mean and covariance specifications. (The expected value of the sample mean and covariance are equal to the input mean (ExpReturn) and covariance (ExpCovariance) specifications.)

For either method the sample mean and covariance returned are appropriately scaled by RetIntervals.

\section*{Description}
portsim simulates correlated returns of NASSETS assets over NUMOBS consecutive observation intervals. Asset returns are simulated as the proportional increments of constant drift, constant volatility stochastic processes, thereby approximating continuous-time geometric Brownian motion.

RetSeries is a NUMOBS-by-NASSETS-by-NUMSIM three-dimensional array of correlated, normally distributed, proportional asset returns. Asset returns over an interval of length \(d t\) are given by
\[
\frac{d S}{S}=\mu d t+\sigma d z=\mu d t+\sigma \varepsilon \sqrt{d t}
\]
where \(S\) is the asset price, \(\mu\) is the expected rate of return, \(\sigma\) is the volatility of the asset price, and \(\varepsilon\) represents a random drawing from a standardized normal distribution.

Notes 1. When Method is 'Exact', the sample mean and covariance of all realizations (scaled by RetIntervals) match the input mean and covariance. When the returns are subsequently converted to asset prices, all terminal prices for a given asset are in close agreement. Although all realizations are drawn independently, they produce similar terminal asset prices. Set Method
to 'Expected' to avoid this behavior.
2. The returns from the portfolios in PortWts are given by PortReturn = PortWts * RetSeries(:,:,1)', where PortWts is a matrix in which each row contains the asset allocations of a portfolio. Each row of PortReturn corresponds to one of the portfolios identified in PortWts, and each column corresponds to one of the observations taken from the first realization (the first plane) in RetSeries. See portopt and portstats for portfolio specification and optimization.

\section*{Examples}

Example 1. Distinction Between Simulation Methods
This example highlights the distinction between the Exact and Expected methods of simulation.

Consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on daily asset returns.
\begin{tabular}{|c|c|c|c|c|c|}
\hline ExpReturn & \(=[0.0246\) & 0.0189 & 0.0273 & 0.0141 & 0.0311]/100; \\
\hline Sigmas & \(=[0.9509\) & 1.4259 & 1.5227 & 1.1062 & 1.0877]/100; \\
\hline Correlations & = [1.0000 & 0.4403 & 0.4735 & 0.4334 & 0.6855 \\
\hline & 0.4403 & 1.0000 & 0.7597 & 0.7809 & 0.4343 \\
\hline & 0.4735 & 0.7597 & 1.0000 & 0.6978 & 0.4926 \\
\hline & 0.4334 & 0.7809 & 0.6978 & 1.0000 & 0.4289 \\
\hline & 0.6855 & 0.4343 & 0.4926 & 0.4289 & 1.0000]; \\
\hline
\end{tabular}

Convert the correlations and standard deviations to a covariance matrix.
```

ExpCovariance = corr2cov(Sigmas, Correlations);
ExpCovariance =
1.0e-003 *

0.0904	0.0597	0.0686	0.0456	0.0709
0.0597	0.2033	0.1649	0.1232	0.0674
0.0686	0.1649	0.2319	0.1175	0.0816
0.0456	0.1232	0.1175	0.1224	0.0516
0.0709	0.0674	0.0816	0.0516	0.1183

```

Assume that there are 252 trading days in a calendar year, and simulate two sample paths (realizations) of daily returns over a two-year period. Since ExpReturn and ExpCovariance are expressed on a daily basis, set RetIntervals = 1.
```

StartPrice = 100;
NumObs = 504; % two calendar years of daily returns
NumSim = 2;
RetIntervals = 1; % one trading day
NumAssets = 5;

```

To illustrate the distinction between methods, simulate two paths by each method, starting with the same random number state.
```

randn('state',0);
RetExact = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Exact');
randn('state',0);
RetExpected = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Expected');

```

If you compare the mean and covariance of RetExact with the inputs (ExpReturn and ExpCovariance), you will observe that they are almost identical.

At this point, RetExact and RetExpected are both 504-by-5-by-2 arrays. Now assume an equally-weighted portfolio formed from the five assets and create arrays of portfolio returns in which each column represents the portfolio return of the corresponding sample path of the simulated returns of the five assets. The portfolio arrays PortRetExact and PortRetExpected are 504-by-2 matrices.
```

Weights = ones(NumAssets, 1)/NumAssets;
PortRetExact = zeros(NumObs, NumSim);
PortRetExpected = zeros(NumObs, NumSim);
for i = 1:NumSim
PortRetExact(:,i) = RetExact(:,:,i) * Weights;
PortRetExpected(:,i) = RetExpected(:,:,i) * Weights;
end

```

Finally, convert the simulated portfolio returns to prices and plot the data. In particular, note that since the Exact method matches expected return and covariance, the terminal portfolio prices are virtually identical for each sample path. This is not true for the Expected simulation method.

Although this example examines portfolios, the same methods apply to individual assets as well. Thus, Exact simulation is most appropriate when unique paths are required to reach the same terminal prices.
```

PortExact = ret2tick(PortRetExact, ...
repmat(StartPrice,1,NumSim));
PortExpected = ret2tick(PortRetExpected, ...
repmat(StartPrice,1,NumSim));
subplot(2,1,1), plot(PortExact, '-r')
ylabel('Portfolio Prices')
title('Exact Method')
subplot(2,1,2), plot(PortExpected, '-b')
ylabel('Portfolio Prices')
title('Expected Method')

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{-) Figure 1} & \multicolumn{3}{|r|}{- \(\square\) [] \(\times\)} \\
\hline \multicolumn{8}{|l|}{File Edit Yiew Insert Iools Desktop Window Help} \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|c|}{Exact Method} \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|c|}{Expected Method} \\
\hline \multicolumn{8}{|l|}{} \\
\hline
\end{tabular}

Example 2. Interaction between ExpReturn, ExpCovariance and RetIntervals
Recall that portsim simulates correlated asset returns over an interval of length \(d t\), given by the equation
\[
\frac{d S}{S}=\mu d t+\sigma d z=\mu d t+\sigma \varepsilon \sqrt{d t}
\]
where \(S\) is the asset price, \(\mu\) is the expected rate of return, \(\sigma\) is the volatility of the asset price, and \(\varepsilon\) represents a random drawing from a standardized normal distribution.

The time increment \(d t\) is determined by the optional input RetIntervals, either as an explicit input argument or as a unit time increment by default. Regardless, the periodicity of ExpReturn, ExpCovariance and RetIntervals must be consistent. For example, if ExpReturn and ExpCovariance are annualized, then RetIntervals must be in years. This point is often misunderstood.

To illustrate the interplay among ExpReturn, ExpCovariance, and RetIntervals, consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on daily asset returns.
\begin{tabular}{|c|c|c|c|c|c|}
\hline ExpReturn & \(=[0.0246\) & 0.0189 & 0.0273 & 0.0141 & 0.0311]/100; \\
\hline Sigmas & \(=[0.9509\) & 1.4259 & 1.5227 & 1.1062 & 1.0877]/100; \\
\hline \multirow[t]{5}{*}{Correlations} & \(=[1.0000\) & 0.4403 & 0.4735 & 0.4334 & 0.6855 \\
\hline & 0.4403 & 1.0000 & 0.7597 & 0.7809 & 0.4343 \\
\hline & 0.4735 & 0.7597 & 1.0000 & 0.6978 & 0.4926 \\
\hline & 0.4334 & 0.7809 & 0.6978 & 1.0000 & 0.4289 \\
\hline & 0.6855 & 0.4343 & 0.4926 & 0.4289 & 1.0000]; \\
\hline
\end{tabular}

Convert the correlations and standard deviations to a covariance matrix of daily returns.
```

ExpCovariance = corr2cov(Sigmas, Correlations);

```

Assume 252 trading days per calendar year, and simulate a single sample path of daily returns over a four-year period. Since the ExpReturn and ExpCovariance inputs are expressed on a daily basis, set RetIntervals = 1.
```

StartPrice = 100;
NumObs = 1008; % four calendar years of daily returns
RetIntervals = 1; % one trading day
NumAssets = length(ExpReturn);
randn('state',0);
RetSeries1 = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, 1, 'Expected');

```

Now annualize the daily data, thereby changing the periodicity of the data, by multiplying ExpReturn and ExpCovariance by 252 and dividing RetIntervals by 252 (RetIntervals = 1/252 of a year).

Resetting the random number generator to its initial state, you can reproduce the results.
```

randn('state',0);
RetSeries2 = portsim(ExpReturn*252, ExpCovariance*252, ...
NumObs, RetIntervals/252, 1, 'Expected');

```

Assume an equally-weighted portfolio and compute portfolio returns associated with each simulated return series.
```

Weights = ones(NumAssets, 1)/NumAssets;
PortRet1 = RetSeries2 * Weights;
PortRet2 = RetSeries2 * Weights;

```

Comparison of the data reveals that PortRet1 and PortRet2 are identical.

\section*{Example 3. Univariate Geometric Brownian Motion}

This example simulates a univariate geometric Brownian motion process. It is based on an example found in Hull, Options, Futures, and Other Derivatives, 5th Edition. (See example 12.2 on page 236). In addition to verifying Hull's example, it also graphically illustrates the lognormal property of terminal stock prices by a rather large Monte Carlo simulation.

First, assume you own a stock with an initial price of \(\$ 20\), an annualized expected return of \(20 \%\) and volatilityof \(40 \%\). Simulate the daily price process for this stock over the course of one full calendar year ( 252 trading days).
```

StartPrice = 20;
ExpReturn = 0.2;

```
```

ExpCovariance = 0.4^2;
NumObs = 252;
NumSim = 10000;
RetIntervals = 1/252;

```

Note that RetIntervals is expressed in years, consistent with the fact that ExpReturn and ExpCovariance are annualized. Also, note that ExpCovariance is entered as a variance rather than the more familiar standard deviation (volatility).

Now set the random number generator state, and simulate 10,000 trials (realizations) of stock returns over a full calendar year of 252 trading days.
```

randn('state',10);
RetSeries = squeeze(portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Expected'));

```

The squeeze function simply reformats the output array of simulated returns from a 252 -by-1-by- 10000 array to more convenient 252 -by- 10000 array. (Recall that portsim is fundamentally a multivariate simulation engine).

In accordance with Hull's equations 12.4 and 12.5 on page 236
\[
\begin{aligned}
& E\left(S_{T}\right)=S_{0} e^{\mu T} \\
& \operatorname{var}\left(S_{T}\right)=S_{0}^{2} e^{2 \mu T}\left(e^{\sigma^{2} T}-1\right)
\end{aligned}
\]
convert the simulated return series to a price series and compute the sample mean and the variance of the terminal stock prices.

StockPrices \(=\) ret2tick(RetSeries, repmat(StartPrice, 1, NumSim));
SampMean \(=\) mean (StockPrices \((\) end, : ) )

SampMean =
24.4587
```

SampVar = var(StockPrices(end,:))
SampVar =

```
104.2016

Compare these values with the values you obtain by using Hull's equations.
ExpValue = StartPrice*exp(ExpReturn)
ExpValue =
    24.4281
ExpVar = ...
StartPrice*StartPrice*exp(2*ExpReturn)*(exp((ExpCovariance)) - 1)
ExpVar =
    103.5391

These results are very close to the results shown in Hull's example 12.2.
Next, display the sample density function of the terminal stock price after one calendar year. From the sample density function, the lognormal distribution of terminal stock prices is apparent.
```

[count, BinCenter] = hist(StockPrices(end,:), 30);
figure
bar(BinCenter, count/sum(count), 1, 'r')
xlabel('Terminal Stock Price')
ylabel('Probability')
title('Lognormal Terminal Stock Prices')

```


See Also
References
ewstats, portopt, portstats, randn, ret2tick
Hull, John, C., Options, Futures, and Other Derivatives, Upper Saddle River, New Jersey: Prentice-Hall. 5th ed., 2003, ISBN 0-13-009056-5.

Purpose
Portfolio expected return and risk

\section*{Syntax}

Arguments

Description
[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance, PortWts) computes the expected rate of return and risk for a portfolio of assets.

PortRisk is an NPORTS-by- 1 vector of the standard deviation of each portfolio.
PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

\section*{Examples}
\(\left.\begin{array}{rrrr}\text { ExpCovariance }= & {[0.0100} & -0.0061 & 0.0042 \\ & -0.0061 & 0.0400 & -0.0252 \\ & 0.0042 & -0.0252 & 0.0225\end{array}\right] ;\)

PortWts=[0.4 0.2 0.4; 0.2 0.4 0.2];
[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,... PortWts)

PortRisk =
0.0560
0.0550

\section*{PortReturn =}
0.1400
0.1300

See Also
frontcon

\section*{Purpose}

Syntax \(\begin{gathered}\text { ValueAtRisk } \\ \text { PortValue) }\end{gathered}\)
Portfolio value at risk
```

ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold,
PortValue)

```

Description

\section*{Examples}

PortReturn \(\quad\) Number of portfolios (NPORTS) by 1 vector or scalar of the expected return of each portfolio over the period.

PortRisk NPORTS-by-1 vector or scalar of the standard deviation of each portfolio over the period.

RiskThreshold (Optional) NPORTS-by-1 vector or scalar specifying the loss probability. Default \(=0.05(5 \%)\).

PortValue (Optional) NPORTS-by-1 vector or scalar specifying the total value of asset portfolio. Default \(=1\).

ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold, PortValue) returns the maximum potential loss in the value of a portfolio over one period of time, given the loss probability level RiskThreshold.

ValueAtRisk is an NPORTS-by-1 vector of the estimated maximum loss in the portfolio, predicted with a confidence probability of 1- RiskThreshold.

If PortValue is not given, ValueAtRisk is presented on a per-unit basis. A value of 0 indicates no losses.

This example computes ValueAtRisk on a per-unit basis.
```

PortReturn = 0.29/100;
PortRisk = 3.08/100;
RiskThreshold = [0.01;0.05;0.10];
PortValue = 1;
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)
ValueAtRisk =
0.0688
0.0478
0.0366

```

This example computes ValueAtRisk with actual values.
```

PortReturn = [0.29/100;0.30/100];
PortRisk = [3.08/100;3.15/100];
RiskThreshold = 0.10;
PortValue = [1000000000;500000000];
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)
ValueAtRisk =
1.0e+007 *
3.6572
1.8684

```

See Also
frontcon, portopt

Purpose
Price bonds in a portfolio by a set of zero curves
Syntax BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)
Arguments Bonds Coupon bond information used to compute prices. A number of bonds (NUMBONDS) by 6 matrix where each row describes a bond. The first two columns are required; the rest are optional but must be added in order. All rows in Bonds must have the same number of columns. Columns are [Maturity CouponRate Face Period Basis EndMonthRule] where:

Maturity Maturity date as a serial date number or date string
CouponRate Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond

Face (Optional) Face or par value of the bond. Default \(=100\).

Period (Optional) Coupons per year of the bond. Allowed values are \(0,1,2\) (default), \(3,4,6\), and 12.

Basis (Optional) Day-count basis of the instrument. A vector of integers. \(0=\mathrm{actual} /\) actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365\), \(4=30 / 360\) (PSA), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

\section*{prbyzero}
\begin{tabular}{ll} 
Settle & Serial date number of the settlement date. \\
ZeroRates & \begin{tabular}{l} 
NUMDATES-by-NUMCURVES matrix of observed zero rates, as \\
decimal fractions. Each column represents a rate curve. Each \\
row represents an observation date.
\end{tabular} \\
ZeroDates & NUMDATES-by-1 column of dates for observed zeros
\end{tabular}

Description BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates) computes the bond prices in a portfolio using a set of zero curves.

BondPrices is a NUMBONDS-by-NUMCURVES matrix of clean bond prices. Each column is derived from the corresponding zero curve in ZeroRates.

This example uses zbtprice to compute a zero curve given a portfolio of coupon bonds and their prices. It then reverses the process, using the zero curve as input to prbyzero to compute the prices.
```

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
datenum('7/1/2000') 0.06 100 2 0 0;
datenum('7/1/2000') 0.09375 100 6 1 0;
datenum('6/30/2001') 0.05125 100 1 3 1;
datenum('4/15/2002') 0.07125 100 4 1 0;
datenum('1/15/2000') 0.065 100 2 0 0;
datenum('9/1/1999') 0.08 100 3 3 0;
datenum('4/30/2001') 0.05875 100 2 0 0;
datenum('11/15/1999') 0.07125 100 2 0 0;
datenum('6/30/2000') 0.07 100 2 3 1;
datenum('7/1/2001') 0.0525 100 2 3 0;
datenum('4/30/2002') 0.07 100 2 0 0];
Prices = [99.375;
99.875;
105.75;
96.875;
103.625;
101.125;
103.125;
99.375;
101.0 ;
101.25 ;

```
```

 96.375;
 102.75];
 Settle = datenum('12/18/1997');

```

Set semiannual compounding for the zero curve, on an actual/365 basis. Derive the zero curve within 50 iterations.
```

OutputCompounding = 2;
OutputBasis = 3;
MaxIterations = 50;

```

Execute zbtprice
[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,... OutputCompounding, OutputBasis, MaxIterations)
which returns the zero curve at the maturity dates.
```

ZeroRates =
0.0616
0.0609
0.0658
0.0590
0.0648
0.0655
0.0606
0.0601
0.0642
0.0621
0.0627
ZeroDates =
729907
7 3 0 3 6 4
730439
730500
730667
730668
7 3 0 9 7 1

```

731032
731033
731321
731336
Now execute prbyzero
```

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

```
which returns
```

BondPrices =

```
99.38
98.80
106.83
96.88
103.62
101.13
103.12
99.36
101.00
101.25
96.37
102.74

In this example zbtprice and prbyzero do not exactly reverse each other. Many of the bonds have the end-of-month rule off (EndMonthRule \(=0\) ). The rule subtly affects the time factor computation. If you set the rule on (EndMonthRule \(=1\) ) everywhere in the Bonds matrix, then prbyzero returns the original prices, except when the two incompatible prices fall on the same maturity date.

See Also tr2bonds, zbtprice

\section*{Purpose}

Price of discounted security
Syntax Price = prdisc(Settle, Maturity, Face, Discount, Basis)
Arguments

Description

\section*{Examples}

Using this data
```

 Settle = '10/14/2000';
 Maturity = '03/17/2001';
 Face = 100;
 Discount = 0.087;
 Basis = 2;
 Price = prdisc(Settle, Maturity, Face, Discount, Basis)
 returns
Price =

```
96.2783

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 2.

Purpose
Price with interest at maturity
```

Syntax [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,
CouponRate, Yield, Basis)

```

\section*{Arguments}

Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.
Issue Enter as serial date number or date string.
Face Redemption (par, face) value.
CouponRate Enter as decimal fraction.
Yield Annual yield. Enter as decimal fraction.
Basis (Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

\section*{Description}

\section*{Examples}
[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face, CouponRate, Yield, Basis) returns the price and accrued interest of a security that pays interest at maturity. This function also applies to zero-coupon bonds or pure discount securities by setting CouponRate \(=0\).

Using this data
```

Settle = '02/07/2002';
Maturity = '04/13/2002';
Issue = '10/11/2001';
Face = 100;
CouponRate = 0.0608;
Yield = 0.0608;
Basis = 1;
[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,...
CouponRate, Yield, Basis)

```
```

returns
Price =
99.9784
AccruInterest $=$
1.9591

```
See Also acrubond, acrudisc, bndprice, prdisc, yldmat
References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.
Formula 4.

Purpose
Price of Treasury bill
```

Syntax Price = prtbill(Settle, Maturity, Face, Discount)
Arguments Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.
Maturity Enter as serial date number or date string.
Face Redemption (par, face) value.
Discount Discount rate of the Treasury bill. Enter as decimal fraction.

```

Description

Examples
```

Price = prtbill(Settle, Maturity, Face, Discount) returns the price for a Treasury bill.
The settlement date of a Treasury bill is February 10, 2002, the maturity date is August 6,2002 , the discount rate is 3.77%, and the par value is $\$ 1000$. Using this data

```
```

 Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)
    ```
    Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)
returns
```

```
Price =
```

Price =
981.4642

```

See Also beytbill, yldtbill
References Bodie, Kane, and Marcus, Investments, pages 41-43.

\section*{pvfix}

Purpose Present value with fixed periodic payments
```

Syntax PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)

```
Arguments rate Periodic interest rate, as a decimal fraction.

NumPeriods Number of periods.
Payment Periodic payment.
ExtraPayment (Optional) Payment received other than Payment in the last period. Default \(=0\).
Due (Optional) When payments are due or made: \(0=\) end of period (default), or \(1=\) beginning of period.
\begin{tabular}{ll} 
Description & \begin{tabular}{l} 
PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due) \\
returns the present value of a series of equal payments.
\end{tabular} \\
Examples & \begin{tabular}{l}
\(\$ 200\) is paid monthly into a savings account earning \(6 \%\). The payments are \\
made at the end of the month for five years. To find the present value of these \\
payments
\end{tabular}
\end{tabular}
```

 PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)
    ```
returns
    PresentVal =
10345.11

\section*{See Also}
fvfix, fvvar, payper, pvvar

\section*{Purpose Present value of varying cash flow}
\begin{tabular}{ll} 
Syntax & PresentVal \(=\) pvvar(CashFlow, Rate, IrrCFDates) \\
Arguments & CashFlow \\
\(\quad\) Rate & \begin{tabular}{l} 
A vector of varying cash flows. Include the initial investment as \\
the initial cash flow value (a negative number).
\end{tabular} \\
IrrCFDates & \begin{tabular}{l} 
Periodic interest rate. Enter as a decimal fraction. \\
(Optional) For irregular (nonperiodic) cash flows, a vector of \\
dates on which the cash flows occur. Enter dates as serial date \\
numbers or date strings. Default assumes CashFlow contains \\
regular (periodic) cash flows.
\end{tabular}
\end{tabular}

Description PresentVal = pvvar(CashFlow, Rate, IrrCFDates) returns the net present value of a varying cash flow.

\section*{Examples}

This cash flow represents the yearly income from an initial investment of \(\$ 10,000\). The annual interest rate is \(8 \%\).

Year \(1 \quad \$ 2000\)
Year \(2 \quad \$ 1500\)
Year \(3 \quad \$ 3000\)
Year \(4 \$ 3800\)
Year \(5 \quad \$ 5000\)

To calculate the net present value of this regular cash flow
PresentVal = pvvar([-10000 2000150030003800 5000], 0.08)
returns
PresentVal =
1715.39

An investment of \(\$ 10,000\) returns this irregular cash flow. The original investment and its date are included. The periodic interest rate is \(9 \%\).
\begin{tabular}{cl} 
Cash flow & Dates \\
\((\$ 10000)\) & January 12, 1987 \\
\(\$ 2500\) & February 14, 1988 \\
\(\$ 2000\) & March 3, 1988 \\
\(\$ 3000\) & June 14, 1988 \\
\(\$ 4000\) & December 1, 1988
\end{tabular}

To calculate the net present value of this irregular cash flow
CashFlow \(=\) [-10000, 2500, 2000, 3000, 4000];
IrrCFDates = ['01/12/1987'
'02/14/1988'
'03/03/1988'
'06/14/1988'
'12/01/1988'];
```

PresentVal = pvvar(CashFlow, 0.09, IrrCFDates)

```
returns
PresentVal =
142.16

\section*{See Also}
fvfix, fvvar, irr, payuni, pvfix

Purpose
Syntax

Arguments

Zero curve given a par yield curve
```

[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, Compounding, Basis, OutputCompounding)

```

ParRates Column vector of annualized implied par yield rates, as decimal fractions. (Par yields = coupon rates.) In aggregate, the yield rates in ParRates constitute an implied par yield curve for the investment horizon represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date numbers) that correspond to the par rates.

Settle A serial date number that is the common settlement date for the par rates.
Compounding (Optional) A scalar that sets the rate at which the par rates are compounded when annualized. Allowed values are:

1 annual compounding
2 semiannual compounding (default)
3 compounding three times per year
4 quarterly compounding
6 bimonthly compounding
12 monthly compounding
365 daily compounding
-1 continuous compounding
Basis (Optional) Day-count basis used to annualize the zero
rates. \(0=\mathrm{actual} /\) actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).
OutputCompounding (Optional) Value representing the rate at which the zero rates are compounded. Default = Compounding.

\section*{Description}
[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, Compounding, Basis, OutputCompounding) returns a zero curve given a par yield curve and its maturity dates.

ZeroRates Column vector of decimal fractions. In aggregate, the rates in ZeroRates constitute a zero curve for the investment horizon represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date numbers) corresponding to the zero rates. This vector is the same as the input vector CurveDates.

\section*{Examples}

Given
- A par yield curve over a set of maturity dates
- A settlement date
- Annual compounding for the input par rates and monthly compounding for the output zero curve
compute a zero yield curve.
```

ParRates = [0.0479
0.0522
0.0540
0.0540
0.0536
0.0532
0.0532
0.0539
0.0558
0.0543];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')

```
```

 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];
 Settle = datenum('03-Nov-2000');
Compounding = 1;
OutputCompounding = 12;
[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates,...
Settle, Compounding, [], OutputCompounding)
ZeroRates =
0.0484
0.0529
0.0549
0.0550
0.0547
0.0544
0.0545
0.0551
0.0572
0.0557
CurveDates =
7 3 0 7 9 6
7 3 0 8 3 1
730866
730887
7 3 0 9 1 4
730943
7 3 0 9 7 1
7 3 1 0 2 7
7 3 1 0 9 8
7 3 1 1 6 7

```

For readability, ParRates and ZeroRates are shown only to the basis point. However, MATLAB computes them at full precision. If you enter ParRates as shown, ZeroRates may differ due to rounding.

\section*{pyld2zero}

See Also
zero2pyld and other functions for Term Structure of Interest Rates

Purpose
Syntax

Arguments

Description

Convert a return series to a price series
```

[TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice,
RetIntervals, StartTime, Method)

```

RetSeries Number of observations (NUMOBS) by number of assets (NASSETS) time series array of asset returns associated with the prices in TickSeries. The \(i\) 'th return is quoted for the period TickTimes(i) to TickTimes(i+1) and is not normalized by the time increment between successive price observations.

StartPrice (Optional) 1-by-NASSETS vector of initial asset prices or a single scalar initial price applied to all assets. Prices start at 1 if StartPrice is not specified.
RetIntervals (Optional) Scalar or NUMOBS-by-1 vector of interval times between observations. If this argument is not specified, all intervals are assumed to have length 1.

StartTime (Optional) Starting time for first observation, applied to the price series of all assets. The default is zero.
Method (Optional) Character string indicating the method to convert asset returns to prices. Must be 'Simple' (default) or 'Continuous'. If Method is 'Simple', ret2tick uses simple periodic returns. If Method is 'Continuous', the function uses continuously compounded returns. Case is ignored for Method.
[TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice, RetIntervals, StartTime, Method) generates price values from the starting prices of NASSETS investments and NUMOBS incremental return observations.

TickSeries is a NUMOBS+1-by-NASSETS times series array of equity prices. The first row contains the oldest observations and the last row the most recent. Observations across a given row occur at the same time for all columns. Each column is a price series of an individual asset. If Method is unspecified or 'Simple', the prices are
```

TickSeries(i+1) = TickSeries(i)*[1 + RetSeries(i)]

```

If Method is 'Continuous', the prices are
```

TickSeries(i+1) = TickSeries(i)*exp[RetSeries(i)]

```

TickTimes is a NUMOBS+1 column vector of monotonically increasing observation times associated with the prices in TickSeries. The initial time is zero unless specified in StartTime, and sequential observation times occur at unit increments unless specified in RetIntervals.

\section*{Examples}

Compute the price increase of two stocks over a year's time based on three incremental return observations.
```

RetSeries = [0.10 0.12
0.05 0.04
-0.05 0.05];
RetIntervals = [182
91
92];
StartTime = datenum('18-Dec-2000');
[TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,...
StartTime)
TickSeries =
1.0000 1.0000
1.1000 1.1200
1.1550 1.1648
1.0973 1.2230
TickTimes =
730838
731020
7 3 1 1 1 1
7 3 1 2 0 3
datestr(TickTimes)

```
```

ans =
18-Dec-2000
18-Jun-2001
17-Sep-2001
18-Dec-2001

```

See Also portsim, tick2ret
```

Purpose Seconds of date or time
Syntax Seconds = second(Date)
Description Seconds = second(Date) returns the seconds given a serial date number or a
date string.
Examples Seconds = second(738647.558427893)
or
Seconds = second('06-May-2022, 13:24:08.17')
returns
Seconds =
8.1700

```
See Also datevec, hour, minute

Purpose
Syntax Return = taxedrr (PreTaxReturn, TaxRate \()\)
Arguments

Description

\section*{Examples}

See Also
effrr, irr, mirr, nomrr, xirr

\section*{Purpose Treasury bond parameters given Treasury bill parameters}

Syntax [TBondMatrix, Settle] = tbl2bond(TBillMatrix)
Arguments

Description
[TBondMatrix, Settle] = tbl2bond(TBillMatrix) restates U.S. Treasury bill market parameters in U.S. Treasury bond form as zero-coupon bonds. This function makes Treasury bills directly comparable to Treasury bonds and notes.

TBondMatrix Treasury bond parameters. An N-by-5 matrix where each row describes an equivalent Treasury (zero-coupon) bond. Columns are [CouponRate Maturity Bid Asked AskYield] where CouponRate Coupon rate, which is always 0 .

Maturity Maturity date, as a serial date number. This date is the same as the Treasury bill Maturity date.

Bid \(\quad\) Bid price based on \(\$ 100\) face value.
Asked Asked price based on \(\$ 100\) face value.
AskYield Asked yield to maturity: the effective return from holding the bond to maturity, annualized on a compound-interest basis.

\section*{Examples}

See Also

Given published Treasury bill market parameters for December 22, 1997
```

TBill = [datenum('jan 02 1998') 10 0.0526 0.0522 0.0530
datenum('feb 05 1998') 44 0.0537}00.0533 0.054
datenum('mar 05 1998') 72 0.0529 0.0527 0.0540];

```

Execute the function.
```

TBond = tbl2bond(TBill)
TBond =

0	729760	99.854	99.855	0.053
0	729790	99.344	99.349	0.0544
0	729820	98.942	98.946	0.054

```
(Example output has been formatted for readability.)
tr2bonds and other functions for Term Structure of Interest Rates

Purpose Find third Wednesday of month
Syntax [BeginDates, EndDates] = thirdwednesday (Month, Year)
Arguments

Description
Month Month of delivery for Eurodollar futures.
Year Four-digit year of delivery for Eurodollar futures, in sequence corresponding to a month in the Month input argument.

Inputs can be scalars or \(n\)-by- 1 vectors.
[BeginDates, EndDates] = thirdwednesday (Month, Year) computes the beginning and end period date for a LIBOR contract (third Wednesdays of delivery months).

BeginDates is the beginning of three-month period contract as specified by Month and Year.

EndDates is the end of three-month period contract as specified by Month and Year.

\section*{Note}
1. All dates are returned as serial date numbers. Convert to strings using datestr.
2. The function returns duplicates if you supply identical months and years.
3. The function supports dates from January 2000 to December 2099.

Find the third Wednesday dates for swaps commencing in the month of October in the years 2002, 2003, and 2004.
```

Months = [10; 10; 10];

```
Months = [10; 10; 10];
Year = [2002; 2003; 2004];
Year = [2002; 2003; 2004];
[BeginDates, EndDates] = thirdwednesday(Months, Year);
```

[BeginDates, EndDates] = thirdwednesday(Months, Year);

```
```

datestr(BeginDates)
ans =
16-0ct-2002
15-0ct-2003
20-0ct-2004
datestr(EndDates)
ans =
16-Jan-2003
15-Jan-2004
20-Jan-2005

```
Purpose Thirty-second quotation to decimal
Syntax OutNumber \(=\) thirtytwo2dec (InNumber, InFraction)
\begin{tabular}{lll} 
Arguments & InNumber & \begin{tabular}{l} 
Scalar or vector of input numbers without fractional \\
component.
\end{tabular} \\
& InFraction & \begin{tabular}{l} 
Scalar or vector of fractional portions of each element in \\
InNumber.
\end{tabular}
\end{tabular}
Description OutNumber \(=\) thirtytwo2dec(InNumber, InFraction) changes the price quotation for a bond or bond future from a fraction with a denominator of 32 to a decimal.

OutNumber represents the sum of InNumber and InFraction expressed as a decimal.
```

Examples Two bonds are quoted as 101-25 and 102-31. Convert these prices to decimal.
InNumber = [101; 102];
InFraction $=$ [25; 31]
OutNumber = thirtytwo2dec(InNumber, InFraction)
OutNumber =

```
    101.7813
    102.9688

\section*{See Also \\ dec2thirtytwo}

\section*{Purpose}

\section*{Syntax}

Arguments

\section*{Description}

Convert a price series to a return series
[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method)
\begin{tabular}{cl} 
TickSeries & \begin{tabular}{l} 
Number of observations (NUMOBS) by number of assets \\
(NASSETS) matrix of prices of equity assets. Each column is a \\
price series of an individual asset. First row is oldest \\
observation. Last row is most recent. Observations across a \\
given row occur at the same time for all columns.
\end{tabular} \\
TickTimes & \begin{tabular}{l} 
(Optional) NUMOBS-by-1 increasing vector of observation times \\
associated with the prices in TickSeries. Times are serial \\
date numbers (day units) or decimal numbers in arbitrary \\
units (e.g., yearly). If TickTimes is empty or missing, \\
sequential observation times from 1, 2, ... NUMOBS are
\end{tabular} \\
Method & \begin{tabular}{l} 
assumed.
\end{tabular} \\
& \begin{tabular}{l} 
(Optional) Character string indicating the method to convert \\
prices to asset returns. Must be 'Simple' (default) or
\end{tabular} \\
& 'Continuous'. If Method is 'Simple', tick2ret computes \\
simple periodic returns. If Method is 'Continuous', returns \\
are continuously compounded. Case is ignored for Method.
\end{tabular}
[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method) computes the asset returns realized between NUMOBS observations of prices of NASSETS assets.

RetSeries is a (NUMOBS-1)-by-NASSETS time series array of asset returns associated with the prices in TickSeries. The \(i\) 'th return is quoted for the period TickTimes(i) to TickTimes(i+1) and is not normalized by the time increment between successive price observations. If Method is unspecified or 'Simple', the returns are:
```

RetSeries(i) = TickSeries(i+1)/TickSeries(i) - 1

```

If Method is 'Continuous', the returns are:
```

RetSeries(i) = log[TickSeries(i+1)/TickSeries(i)]

```

\section*{Examples}

RetIntervals is a (NUMOBS-1)-by-1 column vector of interval times between observations. If TickTimes is empty or unspecified, all intervals are assumed to have length 1.

Compute the periodic returns of two stocks observed in the first, second, third, and fourth quarters.
```

TickSeries = [100 80
110 90
115 88
110 91];
TickTimes = [0
6
9
12];
[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)
RetSeries =
0.1000 0.1250
0.0455 -0.0222
-0.0435 0.0341
RetIntervals =

```
            6
            3
            3

\section*{See Also}
ewstats, ret2tick
Purpose Dates from time and frequency

\section*{Syntax}

Arguments
```

Dates = time2date(Settle, TFactors, Compounding, Basis,
EndMonthRule)

```

Settle

TFactors

Compounding

Settlement date. A vector of serial date numbers or date strings.

A vector of time factors corresponding to the compounding value. TFactors must be equal to or greater than zero.
(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default \(=2\). This argument determines the formula for the discount factors:

Compounding \(=1,2,3,4,6,12\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and \(T\) is the time in periodic units, e.g. \(T=F\) is one year.

Compounding \(=365\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis.

Compounding \(=-1\)
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
\(\left.\begin{array}{ll}\text { Basis } & \begin{array}{l}\text { (Optional) Day-count basis of the instrument. A vector of } \\
\text { integers. } 0=\text { actual/actual (default), } 1=30 / 360 \text { (SIA), }\end{array} \\
2=\text { actual/360, } 3=\text { actual/365, } 4=30 / 360 \text { (PSA), }\end{array}\right\}\)\begin{tabular}{l}
\(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), \\
\(7=\) actual/365 (Japanese). \\
EndMonthRule \\
\begin{tabular}{l} 
(Optional) End-of-month rule. A vector. This rule applies \\
only when Maturity is an end-of-month date for a month \\
having 30 or fewer days. \(0=\) ignore rule, meaning that a
\end{tabular} \\
bond's coupon payment date is always the same \\
numerical day of the month. \(1=\) set rule on (default), \\
meaning that a bond's coupon payment date is always \\
the last actual day of the month.
\end{tabular}

\section*{Description Dates = time2date(Settle, TFactors, Compounding, Basis, EndMonthRule) computes dates corresponding to the times occurring beyond the settlement date.}

The time2date function is the inverse of date2time.

\section*{Examples}

Show that date2time and time2date are the inverse of each other. First compute the time factors using date2time.
```

Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';
'31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
TFactors = date2time(Settle, Dates, Compounding, Basis,...
EndMonthRule)
TFactors =
5.9945
6.9945
7.5738
8.6576

```

Now use the calculated TFactors in time2date and compare the calculated dates with the original set.
```

Dates_calc = time2date(Settle, TFactors, Compounding, Basis,...
EndMonthRule)
Dates_calc =
7 3 2 5 5 5
7 3 2 7 3 6
7 3 2 8 4 3
7 3 3 0 4 2
datestr(Dates_calc)
ans =
31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006

```

See Also cftimes, date2time

\section*{today}
Purpose Current date
Syntax Datenum = today
Description Datenum = today returns the current date as a serial date number.
Examples Datenum = todayreturnsDatenum =
730695
on July 28, 2000.
See Also datenum, datestr, now

Purpose

\section*{Syntax}

Arguments

\section*{Description}

Term-structure parameters given Treasury bond parameters
```

[Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)

```

TreasuryMatrix Treasury bond parameters. An n-by-5 matrix, where each row describes a Treasury bond. Columns are [CouponRate Maturity Bid Asked AskYield] where CouponRate Coupon rate, as a decimal fraction.

Maturity Maturity date, as a serial date number. Use datenum to convert date strings to serial date numbers.
\begin{tabular}{ll} 
Bid & Bid price based on \(\$ 100\) face value. \\
Asked & Asked price based on \(\$ 100\) face value. \\
AskYield & Asked yield to maturity, as a decimal fraction.
\end{tabular}

Settle (Optional) Date string or serial date number of the settlement date for the analysis.
[Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle) returns term-structure parameters (bond information, prices, and yields) sorted by ascending maturity date, given Treasury bond parameters. The formats of the output matrix and vectors meet requirements for input to the zbtprice and zbtyield zero-curve bootstrapping functions.

\section*{tr2bonds}

Bonds Coupon bond information. An n-by-6 matrix where each row describes a bond. Columns are [Maturity CouponRate Face Period Basis EndMonthRule] where:

Maturity Maturity date of the bond, as a serial date number. Use datestr to convert serial date numbers to date strings.

CouponRate Coupon rate of the bond, as a decimal fraction.
Face Redemption or face value of the bond, always 100.
Period Coupons per year of the bond, always 2.
Basis \(\quad\) Day-count basis of the bond, always 0 (actual/actual).

EndMonthRule End-of-month flag, always 1, meaning that a bond's coupon payment date is always the last day of the month.

Prices Prices. A column vector containing the price of each bond in bonds, respectively. The number of rows ( n ) matches the number of rows in bonds.

Yields Yields. A column vector containing the yield to maturity of each bond in bonds, respectively. The number of rows ( \(n\) ) matches the number of rows in bonds. If Settle is input, Yields is computed as a semiannual yield to maturity. If Settle is not input, the quoted input yields will be used.

\section*{Examples}

Given published Treasury bond market parameters for December 22, 1997
```

Matrix =[0.0650 datenum('15-apr-1999') 101.03125 101.09375 0.0564
0.05125 datenum('17-dec-1998') 99.4375 99.5 0.0563
0.0625 datenum('30-jul-1998') 100.3125 100.375 0.0560
0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

```

Execute the function.
```

[Bonds, Prices, Yields] = tr2bonds(Matrix)

```
```

Bonds =

729840	0.06125	100	2	0	1
729966	0.0625	100	2	0	1
730106	0.05125	100	2	0	1
730225	0.065	100	2	0	1

Prices =
100.1563
100.3750
99.5000
101.0938
Yields =
0.0546
0.056
0.0563
0.0564

```
(Example output has been formatted for readability.)

\section*{See Also}
tbl2bond, zbtprice, zbtyield, and other functions for Term Structure of Interest Rates

\section*{Purpose Univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) parameter estimation with Gaussian innovations}

\section*{Syntax}

Arguments

Description
[Kappa, Alpha, Beta] = ugarch(U, P, Q)

U Single column vector of random disturbances, i.e., the residuals or innovations ( \(\varepsilon_{t}\) ), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is assumed to follow a GARCH \((P, Q)\) process.
P Non-negative, scalar integer representing a model order of the GARCH process. \(P\) is the number of lags of the conditional variance. \(P\) can be zero; when \(P=0\), a \(\operatorname{GARCH}(0, Q)\) process is actually an ARCH(Q) process.

Q Positive, scalar integer representing a model order of the GARCH process. \(Q\) is the number of lags of the squared innovations.
[Kappa, Alpha, Beta] = ugarch(U, P, Q) computes estimated univariate GARCH \((\mathrm{P}, \mathrm{Q})\) parameters with Gaussian innovations.

Kappa is the estimated scalar constant term ( \(\kappa\) ) of the GARCH process.
Alpha is a P-by- 1 vector of estimated coefficients, where \(P\) is the number of lags of the conditional variance included in the GARCH process.

Beta is a Q-by-1 vector of estimated coefficients, where \(Q\) is the number of lags of the squared innovations included in the GARCH process.
The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=\kappa+\sum_{i=1}^{\digamma} \alpha_{i} \sigma_{t-i}^{2}+\sum_{i=1}^{\iota} \beta_{j} \varepsilon_{t-j}^{2}
\]
where \(\alpha\) represents the argument Alpha, \(\beta\) represents Beta, and the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) coefficients \(\{\kappa, \alpha, \beta\}\) are subject to the following constraints.
\[
\begin{array}{rl}
\sum_{i=1}^{P} a_{i}+\sum_{j=1}^{Q} \beta_{j}<1 & \\
\kappa>0 & \\
a_{i} \geq 0 & i=1,2, \ldots, P \\
\beta_{j} \geq 0 & j=1,2, \ldots, Q
\end{array}
\]

Note that \(U\) is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although \(\sigma_{t}^{2}\) is generated using the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (i.i.d.) sequence \(\sim N(0,1)\).

Note ugarch corresponds generally to the GARCH Toolbox function garchfit. The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information, see the GARCH Toolbox User's Guide or the financial products Web page at http://www.mathworks.com/products/finprod/.

\section*{Examples}

\section*{See Also}

References

See ugarchsim for an example of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process.
ugarchpred, ugarchsim, and the GARCH Toolbox function garchfit
James D. Hamilton, Time Series Analysis, Princeton University Press, 1994
\begin{tabular}{|c|c|}
\hline Purpose & Log-likelihood objective function of univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) processes with Gaussian innovations \\
\hline Syntax & LogLikelihood = ugarchllf(Parameters, U, P, Q) \\
\hline \multirow[t]{4}{*}{Arguments} & Parameters (1 + P + Q)- by-1 column vector of \(\operatorname{GARCH}(P, Q)\) process parameters. The first element is the scalar constant term \(\kappa\) of the GARCH process; the next \(P\) elements are coefficients associated with the \(P\) lags of the conditional variance terms; the next \(Q\) elements are coefficients associated with the \(Q\) lags of the squared innovations terms. \\
\hline & U Single column vector of random disturbances, i.e., the residuals or innovations ( \(\varepsilon_{t}\) ), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is assumed to follow a GARCH \((\mathrm{P}, \mathrm{Q})\) process. \\
\hline & P Nonnegative, scalar integer representing a model order of the GARCH process. \(P\) is the number of lags of the conditional variance. \(P\) can be zero; when \(P=0\), a \(\operatorname{GARCH}(0, Q)\) process is actually an \(\operatorname{ARCH}(\mathrm{Q})\) process. \\
\hline & Q Positive, scalar integer representing a model order of the GARCH process. \(Q\) is the number of lags of the squared innovations. \\
\hline \multirow[t]{3}{*}{Description} & LogLikelihood = ugarchllf(Parameters, U, P, Q) computes the log-likelihood objective function of univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) processes with Gaussian innovations. \\
\hline & LogLikelihood is a scalar value of the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) log-likelihood objective function given the input arguments. This function is meant to be optimized via the fmincon function of the Optimization Toolbox. \\
\hline & fmincon is a minimization routine. To maximize the log-likelihood function, the LogLikelihood output parameter is actually the negative of what is formally presented in most time series or econometrics references. \\
\hline
\end{tabular}

The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=\kappa+\sum_{i=1}^{\digamma} \alpha_{i} \sigma_{t-i}^{2}+\sum_{j=1}^{\natural} \beta_{j} \varepsilon_{t-j}^{2}
\]
where \(\alpha\) represents the argument Alpha, and \(\beta\) represents Beta.
\(U\) is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) representing a mean-zero, discrete time stochastic process. Although \(\sigma_{t}^{2}\) is generated via the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (i.i.d.) sequence \(\sim N(0,1)\).
Since ugarchllf is really just a helper function, no argument checking is performed. This function is not meant to be called directly from the command line.

Note The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information see the GARCH Toolbox User's Guide or the financial products Web page at http://www.mathworks.com/products/finprod/.

\section*{See Also}
ugarch, ugarchpred, ugarchsim

\section*{ugarchpred}
\begin{tabular}{|c|c|}
\hline Purpose & Forecast conditional variance of univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) processes \\
\hline Syntax & ```
[VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta,
    NumPeriods)
``` \\
\hline \multirow[t]{5}{*}{Arguments} & U Single column vector of random disturbances, i.e., the residuals or innovations (\(\varepsilon_{t}\)), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is assumed to follow a GARCH \((\mathrm{P}, \mathrm{Q})\) process. \\
\hline & Kappa Scalar constant term \(\kappa\) of the GARCH process. \\
\hline & \begin{tabular}{l}
Alpha \(\quad \mathrm{P}\)-by- 1 vector of coefficients, where P is the number of lags of the conditional variance included in the GARCH process. \\
Alpha can be an empty matrix, in which case \(P\) is assumed 0 ; when \(P=0\), a \(\operatorname{GARCH}(0, Q)\) process is actually an \(\operatorname{ARCH}(Q)\) process.
\end{tabular} \\
\hline & Beta \(Q\)-by-1 vector of coefficients, where \(Q\) is the number of lags of the squared innovations included in the GARCH process. \\
\hline & NumPeriods Positive, scalar integer representing the forecast horizon of interest, expressed in periods compatible with the sampling frequency of the input innovations column vector \(U\). \\
\hline \multirow[t]{3}{*}{Description} & [VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta, NumPeriods) forecasts the conditional variance of univariate GARCH \((\mathrm{P}, \mathrm{Q})\) processes. \\
\hline & VarianceForecast is a number of periods (NUMPERIODS)-by-1 vector of the minimum mean-square error forecast of the conditional variance of the innovations time series vector \(U\) (i.e., \(\varepsilon_{t}\)). The first element contains the 1-period-ahead forecast, the second element contains the 2-period-ahead forecast, and so on. Thus, if a forecast horizon greater than 1 is specified (NUMPERIODS > 1), the forecasts of all intermediate horizons are returned as well. In this case, the last element contains the variance forecast of the specified horizon, NumPeriods from the most recent observation in \(U\). \\
\hline & \(H\) is a vector of the conditional variances \(\left(\sigma_{t}^{2}\right)\) corresponding to the innovations vector \(U\). It is inferred from the innovations \(U\), and is a reconstruction of the \\
\hline
\end{tabular}
"past" conditional variances, whereas the VarianceForecast output represents the projection of conditional variances into the "future." This sequence is based on setting pre-sample values of \(\sigma_{t}^{2}\) to the unconditional variance of the \(\left\{\varepsilon_{t}\right\}\) process. His a single column vector of the same length as the input innovations vector \(U\).

The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=\kappa+\sum_{i=1}^{\digamma} \alpha_{i} \sigma_{t-i}^{2}+\sum_{j=1}^{\varphi} \beta_{j} \varepsilon_{t-j}^{2}
\]
where \(\alpha\) represents the argument Alpha, \(\beta\) represents Beta, and the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) coefficients \(\{\kappa, \alpha, \beta\}\) are subject to the following constraints.
\[
\begin{array}{rl}
\sum_{i=1}^{P} a_{i}+\sum_{j=1}^{Q} \beta_{j}<1 & \\
\kappa>0 & \\
a_{i} \geq 0 & i=1,2, \ldots, P \\
\beta_{j} \geq 0 & j=1,2, \ldots, Q
\end{array}
\]

Note that \(U\) is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although \(\sigma_{t}^{2}\) is generated using the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (i.i.d.) sequence \(\sim N(0,1)\).

Note ugarchpred corresponds generally to the GARCH Toolbox function garchpred. The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information see the GARCH Toolbox User's Guide or the financial products Web page at http://www.mathworks.com/products/finprod/.

\section*{Examples}

See Also

See ugarchsim for an example of forecasting the conditional variance of a univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process.
ugarch, ugarchsim, and the GARCH Toolbox function garchpred

\section*{Purpose}

Syntax
Arguments

\section*{Description}

Simulate a univariate \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process with Gaussian innovations
```

[U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples)

```

Kappa Scalar constant term \(K\) of the GARCH process.
Alpha \(\quad \mathrm{P}\)-by- 1 vector of coefficients, where P is the number of lags of the conditional variance included in the GARCH process. Alpha can be an empty matrix, in which case \(P\) is assumed 0 ; when \(P=0\), a \(\operatorname{GARCH}(0, Q)\) process is actually an \(\operatorname{ARCH}(Q)\) process.

Beta \(Q\)-by- 1 vector of coefficients, where \(Q\) is the number of lags of the squared innovations included in the GARCH process.
NumSamples Positive, scalar integer indicating the number of samples of the innovations \(U\) and conditional variance \(H\) (see below) to simulate.
[U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples) simulates a univariate GARCH \((\mathrm{P}, \mathrm{Q})\) process with Gaussian innovations.
\(U\) is a number of samples (NUMSAMPLES)-by- 1 vector of innovations (\(\varepsilon_{t}\)), representing a mean-zero, discrete-time stochastic process. The innovations time series \(U\) is designed to follow the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process specified by the inputs Kappa, Alpha, and Beta.

H is a NUMSAMPLES-by- 1 vector of the conditional variances \(\left(\sigma_{t}{ }^{2}\right)\) corresponding to the innovations vector \(U\). Note that \(U\) and \(H\) are the same length, and form a "matching" pair of vectors. As shown in the following equation, \(\sigma_{t}^{2}\) (i.e., \(\mathrm{H}(\mathrm{t})\)) represents the time series inferred from the innovations time series \(\left\{\varepsilon_{t}\right\}\) (i.e., U).

The time-conditional variance, \(\sigma_{t}^{2}\), of a \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) process is modeled as
\[
\sigma_{t}^{2}=\kappa+\sum_{i=1}^{\digamma} \alpha_{i} \sigma_{t-i}^{2}+\sum_{j=1}^{\varphi} \beta_{j} \varepsilon_{t-j}^{2}
\]
where \(\alpha\) represents the argument Alpha, \(\beta\) represents Beta, and the \(\operatorname{GARCH}(\mathrm{P}, \mathrm{Q})\) coefficients \(\{\kappa, \alpha, \beta\}\) are subject to the following constraints.
\[
\begin{array}{rl}
\sum_{i=1}^{P} a_{i}+\sum_{j=1}^{Q} \beta_{j}<1 & \\
\kappa>0 & \\
a_{i} \geq 0 & i=1,2, \ldots, P \\
\beta_{j} \geq 0 & j=1,2, \ldots, Q
\end{array}
\]

Note that \(U\) is a vector of residuals or innovations \(\left(\varepsilon_{t}\right)\) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although \(\sigma_{t}^{2}\) is generated using the equation above, \(\varepsilon_{t}\) and \(\sigma_{t}^{2}\) are related as
\[
\varepsilon_{t}=\sigma_{t} v_{t}
\]
where \(\left\{v_{t}\right\}\) is an independent, identically distributed (i.i.d.) sequence \(\sim N(0,1)\).
The output vectors U and H are designed to be steady-state sequences in which transients have arbitrarily small effect. The (arbitrary) metric used by ugarchsim strips the first \(N\) samples of \(U\) and \(H\) such that the sum of the GARCH coefficients, excluding Kappa, raised to the Nth power, does not exceed 0.01.
\[
0.01=(\operatorname{sum}(\text { Alpha })+\operatorname{sum}(\text { Beta }))^{\wedge} N
\]

Thus
\[
N=\log (0.01) / \log ((\operatorname{sum}(A l p h a)+\operatorname{sum}(B e t a)))
\]

Note ugarchsim corresponds generally to the GARCH Toolbox function garchsim. The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information see the GARCH Toolbox User's Guide or the financial products Web page at http://www.mathworks.com/products/finprod/.

\section*{Examples}

This example simulates a \(\operatorname{GARCH}(P, Q)\) process with \(P=2\) and \(Q=1\).
\% Set the random number generator seed for reproducability.
```

randn('seed', 10)

```
\% Set the simulation parameters of \(\operatorname{GARCH}(P, Q)=\operatorname{GARCH}(2,1)\) process.
Kappa \(=0.25 ; \quad\) \%a positive scalar.
Alpha = [0.2 0.1]'; \%a column vector of nonnegative numbers \((P=2)\).
Beta \(=0.4 ; \quad \% Q=1\).
NumSamples \(=500\); \% number of samples to simulate.
\% Now simulate the process.
[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);
\% Estimate the process parameters.
\(P=2\); Model order \(P\) (\(P=\) length of Alpha).
\(Q=1 ; \quad \%\) Model order \(Q(Q=\) length of Beta).
[k, a, b] \(=\operatorname{ugarch}(U, P, Q)\);
disp(' ')
disp(' Estimated Coefficients:')
disp(' ---------------------' \()\)
disp([k; a; b])
disp(' ')
\% Forecast the conditional variance using the estimated
\% coefficients.
NumPeriods \(=10\); \(\quad\) \% Forecast out to 10 periods.
[VarianceForecast, H1] = ugarchpred(U, k, a, b, NumPeriods);
disp(' Variance Forecasts:')
disp(' -----------------')
disp(VarianceForecast)
disp(' ')

When the above code is executed, the screen output looks like the display shown.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Number of variables: 4} \\
\hline \multicolumn{7}{|l|}{Functions} \\
\hline \multicolumn{3}{|l|}{Objective:} & \multicolumn{2}{|l|}{ugarchllf} & & \\
\hline \multicolumn{3}{|l|}{Gradient:} & \multicolumn{3}{|l|}{finite-differencing} & \\
\hline & sian: & & \multicolumn{4}{|l|}{finite-differencing (or Quasi-Newton)} \\
\hline \multicolumn{7}{|l|}{Constraints} \\
\hline \multicolumn{4}{|l|}{Nonlinear constraints:} & \multicolumn{3}{|c|}{do not exist} \\
\hline \multicolumn{4}{|l|}{Number of linear inequal} & constra & : 1 & \\
\hline \multicolumn{4}{|l|}{Number of linear equality} & onstrain & 0 & \\
\hline \multicolumn{4}{|l|}{Number of lower bound cons} & raints: & 4 & \\
\hline \multicolumn{3}{|l|}{Number of upper} & bound cons & raints: & 0 & \\
\hline \multicolumn{4}{|l|}{Algorithm selected medium-scale} & & & \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{End diagnostic information} \\
\hline & & & max & & Directional & \\
\hline ter & F-count & \(f(x)\) & constraint & Step-size & derivative & Procedure \\
\hline 1 & 5 & 699.185 & -0.125 & 1 & -2.97e+006 & \\
\hline 2 & 22 & 658.224 & -0.1249 & 0.000488 & -64.6 & \\
\hline 3 & 28 & 610.181 & 0 & 1 & -49.4 & \\
\hline 4 & 35 & 590.888 & 0 & 0.5 & -38.9 & \\
\hline 5 & 42 & 583.961 & -0.03317 & 0.5 & -29.8 & \\
\hline 6 & 49 & 583.224 & -0.02756 & 0.5 & -31.8 & \\
\hline 7 & 57 & 582.947 & -0.02067 & 0.25 & -7.28 & \\
\hline 8 & 63 & 578.182 & 0 & 1 & -2.43 & \\
\hline 9 & 71 & 578.138 & -0.09145 & 0.25 & -0.55 & \\
\hline 10 & 77 & 577.898 & -0.04452 & 1 & -0.148 & \\
\hline 11 & 84 & 577.882 & -0.06128 & 0.5 & -0.0488 & \\
\hline 12 & 90 & 577.859 & -0.07117 & 1 & -0.000758 & \\
\hline 13 & 96 & 577.858 & -0.07033 & 1 & -0.000305 & Hessian m \\
\hline 14 & 102 & 577.858 & -0.07042 & 1 & -3.32e-005 & Hessian mod \\
\hline 15 & 108 & 577.858 & -0.0707 & 1 & -1.29e-006 & Hessian m \\
\hline 16 & 114 & 577.858 & -0.07077 & 1 & -1.29e-007 & Hessian m \\
\hline 17 & 120 & 577.858 & -0.07081 & 1 & -1.97e-007 & Hessian m \\
\hline
\end{tabular}
```

Optimization Converged Successfully
Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation
is less than options.TolCon
No Active Constraints
Estimated Coefficients:
0.2520
0.0708
0.1623
0.4000
Variance Forecasts:
1.3243
0.9594
0.9186
0.8402
0.7966
0.7634
0.7407
0.7246
0.7133
0.7054

```

\section*{See Also}

References
ugarch, ugarchpred, and the GARCH Toolbox function garchsim
James D. Hamilton, Time Series Analysis, Princeton University Press, 1994

\section*{weekday}

Purpose Day of the week
Syntax
[DayNum, DayString] = weekday(Date)

Description
[DayNum, DayString] = weekday(Date) returns the day of the week in numeric and string form given the date as a serial date number or date string. The days of the week have these values.
\begin{tabular}{ll}
DayNum & DayString \\
1 & Sun \\
2 & Mon \\
3 & Tue \\
4 & Wed \\
5 & Thu \\
6 & Fri \\
7 & Sat
\end{tabular}

Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.
Examples
[DayNum, DayString] = weekday(730845)

or

 [DayNum, DayString] = weekday('25-Dec-2000')

 returns

 DayNum =

 2

 DayString =

 Mon
See Also datenum, datestr, datevec, day

\section*{wrkdydif}

Purpose Number of working days between dates
```

Syntax Days = wrkdydif(StartDate, EndDate, Holidays)

```

Description Days = wrkdydif(StartDate, EndDate, Holidays) returns the number of working days between dates StartDate and EndDate. Holidays is the number of holidays between the given dates, an integer. Enter dates as serial date numbers or date strings.

\section*{Examples}

> Days = wrkdydif('9/1/2000', '9/11/2000', 1)
or
Days = wrkdydif(730730, 730740, 1)
returns
Days =
6
See Also busdate, datewrkdy, days360, days365, daysact, daysdif, holidays, yearfrac

Purpose
Syntax
Arguments

\section*{Description}

\section*{Examples}

Excel serial date number to MATLAB serial date number
```

MATLABDate = x2mdate(ExcelDateNumber, Convention)

```

ExcelDateNumber A vector or scalar of Excel serial date numbers.
Convention (Optional) Excel date system. A vector or scalar. When Convention = 0 (default), the Excel 1900 date system is in effect. When Convention = 1, the Excel 1904 date system in used.

In the Excel 1900 date system, the Excel serial date number 1 corresponds to January 1, 1900 A.D. In the Excel 1904 date system, date number 0 is January 1, 1904 A.D.

Vector arguments must have consistent dimensions.
DateNumber = x2mdate(ExcelDateNumber, Convention) converts Excel serial date numbers to MATLAB serial date numbers. MATLAB date numbers start with \(1=\) January 1, 0000 A.D., hence there is a difference of 693961 relative to the 1900 date system, or 695422 relative to the 1904 date system. This function is useful with MATLAB Excel Link.

Given Excel date numbers in the 1904 system
```

    ExDates = [ll35423 35788 36153];
    ```
convert them to MATLAB date numbers
MATLABDate = x2mdate (ExDates, 1)

MATLABDate =
\(730845 \quad 731210 \quad 731575\)
and then to date strings.

\section*{x2mdate}
```

datestr(MATLABDate)
ans =
25-Dec-2000
25-Dec-2001
25-Dec-2002

```

\section*{See Also \\ datenum, datestr, m2xdate}

\section*{Purpose}

Syntax
Arguments

Description

Examples

Internal rate of return for nonperiodic cash flow
```

Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations)

```

CashFlow A vector of nonperiodic cash flows. Include the initial investment as the initial cash flow value (a negative number).

CashFlowDates A vector of dates on which the cash flows occur. Enter dates as serial date numbers or date strings.

Guess (Optional) Initial estimate of the expected return. Default = 0.1 (\(10 \%\)).

MaxIterations (Optional) Number of iterations used by Newton's method to solve for Return. Default \(=50\).

Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations) returns the internal rate of return for a schedule of nonperiodic cash flows.

An investment of \(\$ 10,000\) returns this nonperiodic cash flow. The original investment and its date are included.

\section*{Cash flow Dates}
(\$10000) January 12, 2000
\(\$ 2500 \quad\) February 14, 2001
\$2000 March 3, 2001
\$3000 June 14, 2001
\(\$ 4000 \quad\) December 1, 2001

To calculate the internal rate of return for this nonperiodic cash flow
```

CashFlow = [-10000, 2500, 2000, 3000, 4000];
CashFlowDates = ['01/12/2000'
'02/14/2001'
'03/03/2001'
'06/14/2001'
'12/01/2001'];

```

\section*{xirr}
```

    Return = xirr(CashFlow, CashFlowDates)
    ```

\section*{returns}
```

Return =
0.1009 (or 10.09%)

```
See Also fvvar, irr, mirr, pvvar
References Sharpe and Alexander, Investments, 4th edition, page 463.
Purpose Year of date
Syntax Year = year(Date)DescriptionYear \(=\) year(Date) returns the year of a serial date number or a date string.
Examples Year \(=\) year(731798.776)or
 Year = year('05-Aug-2003')
returns
 Year =
 2003
See Also datevec, day, month, yeardays

\section*{yeardays}

\section*{Purpose Number of days in year}
Syntax Days = yeardays(Year, Basis)
\begin{tabular}{lll}
Arguments & Year & Enter as a four-digit integer. \\
Basis & (Optional) Day-count basis of the instrument. A vector of \\
& integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \\
& \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360\) (PSA), \\
& \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), \\
& \(7=\) actual/365 (Japanese).
\end{tabular}

\section*{Description}

Days = yeardays(Year, Basis) returns the number of days in the given year, based upon the day-count basis.

\section*{Examples}
```

Days = yeardays(2000)
Days =
366
Days = yeardays(2000, 1)
Days =

```
 360

See Also
days360, days365, daysact, year, yearfrac

\section*{Purpose}

Fraction of year between dates
```

Syntax Fraction = yearfrac(StartDate, EndDate, Basis)

```

\section*{Arguments}

Description

Examples
```

Fraction = yearfrac('14 mar 01', '14 sep 01', 0)
Fraction =

```
 0.5041
Fraction = yearfrac('14 mar 01', '14 sep 01', 1)
Fraction =
0.5000

See Also
days360, days365, daysact, daysdif, months, wrkdydif, yeardays

\section*{ylddisc}

\section*{Purpose Yield of discounted security}
```

Syntax Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

```

Arguments Settle Settlement date. Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.
Face Redemption (par, face) value.
Price Discounted price of the security.
Basis (Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

Description Yield = ylddisc(Settle, Maturity, Face, Price, Basis) finds the yield of a discounted security.

\section*{Examples}

Using the data
```

    Settle = '10/14/2000';
    Maturity = '03/17/2001';
    Face = 100;
    Price = 96.28;
    Basis = 2;
    Yield = ylddisc(Settle, Maturity, Face, Price, Basis)
    returns
Yield =

$$
0.0903 \text { (or } 9.03 \% \text { ) }
$$

```

See Also
References
acrudisc, bndprice, bndyield, prdisc, yldmat, yldtbill
Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 1.

\section*{Purpose}

Syntax

Arguments

\section*{Description}

\section*{Examples}

Yield with interest at maturity
```

Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate,
Basis)

```

Settle Settlement date. Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.
Issue Issue date. Enter as serial date number or date string.
Face Redemption (par, face) value.
Price Price of the security.
CouponRate Coupon rate. Enter as decimal fraction.
Basis (Optional) Day-count basis of the instrument. A vector of integers. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate, Basis) returns the yield of a security paying interest at maturity.

Using the data
```

    Settle = '02/07/2000';
    Maturity = '04/13/2000';
    Issue = '10/11/1999';
    Face = 100;
    Price = 99.98;
    CouponRate = 0.0608;
    Basis = 1;
    Yield = yldmat(Settle, Maturity, Issue, Face, Price,...
    CouponRate, Basis)
    ```
returns
 Yield =

\section*{yldmat}
\[
0.0607 \text { (or 6.07\%) }
\]

See Also acrubond, bndprice, bndyield, prmat, ylddisc, yldtbill
References
Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. Formula 3.

Purpose
Syntax
Arguments
Description

Examples

See Also
References

Yield of Treasury bill
```

Yield = yldtbill(Settle, Maturity, Face, Price)

```

Settle Settlement date. Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.
Face Redemption (par, face) value.
Price Price of the Treasury bill.

Yield = yldtbill(Settle, Maturity, Face, Price) returns the yield for a Treasury bill.

The settlement date of a Treasury bill is February 10, 2000, the maturity date is August 6,2000 , the par value is \(\$ 1000\), and the price is \(\$ 981.36\). Using this data

Yield \(=\) yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)
returns
Yield =
\[
0.0384 \text { (or 3.84\%) }
\]
beytbill, bndyield, prtbill, yldmat
Bodie, Kane, and Marcus, Investments, pages 41-43.

\section*{zbtprice}

\section*{Purpose Zero curve bootstrapping from coupon bond data given price}

\section*{Arguments \\ Bonds}

Coupon bond information used to generate the zero curve. An n-by-2 to n-by-6 matrix where each row describes a bond. The first two columns are required; the rest are optional but must be added in order. All rows in Bonds must have the same number of columns.

Columns are
[Maturity CouponRate Face Period Basis EndMonthRule] where
Maturity Maturity date of the bond, as a serial date number. Use datenum to convert date strings to serial date numbers.

CouponRate Coupon rate of the bond, as a decimal fraction.

Face (Optional) Redemption or face value of the bond. Default \(=100\).
Period (Optional) Coupons per year of the bond, as an integer. Allowed values are \(0,1,2\) (default), \(3,4,6\), and 12.

Basis (Optional) Day-count basis of the bond: \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365\), \(4=30 / 360\) (PSA), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

\section*{zbtprice}
\begin{tabular}{rl}
EndMonthRule & \begin{tabular}{l}
(Optional) End-of-month flag. This flag \\
applies only when Maturity is an
\end{tabular} \\
end-of-month date for a month having \\
& 30 or fewer days. 0 = ignore flag, \\
& meaning that a bond's coupon payment \\
date is always the same day of the \\
& month. \(1=\) set flag (default), meaning \\
that a bond's coupon payment date is \\
always the last day of the month.
\end{tabular}

Prices A column vector containing the clean price (price without accrued interest) of each bond in Bonds, respectively. The number of rows (\(n\)) must match the number of rows in Bonds.

Settle Settlement date, as a scalar serial date number. This represents time zero for deriving the zero curve, and it is normally the common settlement date for all the bonds.

OutputCompounding (Optional) A scalar that sets the compounding frequency per year for the output zero rates in ZeroRates. Allowed values are:

1 annual compounding
2 semiannual compounding (default)
3 compounding three times per year
4 quarterly compounding
6 bimonthly compounding
12 monthly compounding
-1 continuous compounding
Description \(\quad\)\begin{tabular}{l}
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle, \\
OutputCompounding) uses the bootstrap method to return a zero curve given a \\
portfolio of coupon bonds and their prices. A zero curve consists of the yields to \\
maturity for a portfolio of theoretical zero-coupon bonds that are derived from \\
the input Bonds portfolio. The bootstrap method that this function uses does
\end{tabular}

\section*{zbtprice}
not require alignment among the cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond arbitrage and yield interpolation to derive all zero rates. For best results, use a portfolio of at least 30 bonds evenly spaced across the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero rates for each point along the investment horizon represented by CurveDates; \(m\) is the number of bonds of unique maturity dates. In aggregate, the rates in ZeroRates constitute a zero curve.

If more than one bond has the same maturity date, zbtprice returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates; \(m\) is the number of bonds of different maturity dates. These dates begin with the earliest maturity date and end with the latest maturity date Maturity in the Bonds matrix.

Examples Given data and prices for 12 coupon bonds, two with the same maturity date; and given the common settlement date
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bonds = [datenum('6/1/1998') & 0.0475 & 100 & 2 & 0 & 0; \\
\hline datenum('7/1/2000') & 0.06 & 100 & 2 & 0 & 0; \\
\hline datenum('7/1/2000') & 0.09375 & 100 & 6 & 1 & 0; \\
\hline datenum('6/30/2001') & 0.05125 & 100 & 1 & 3 & 1; \\
\hline datenum('4/15/2002') & 0.07125 & 100 & 4 & 1 & 0; \\
\hline datenum('1/15/2000') & 0.065 & 100 & 2 & 0 & 0; \\
\hline datenum('9/1/1999') & 0.08 & 100 & 3 & 3 & 0; \\
\hline datenum('4/30/2001') & 0.05875 & 100 & 2 & 0 & 0; \\
\hline datenum('11/15/1999') & 0.07125 & 100 & 2 & 0 & 0; \\
\hline datenum('6/30/2000') & 0.07 & 100 & 2 & 3 & 1; \\
\hline datenum('7/1/2001') & 0.0525 & 100 & 2 & 3 & 0; \\
\hline datenum('4/30/2002') & 0.07 & 100 & 2 & 0 & 0]; \\
\hline Prices = [99.375; & & & & & \\
\hline 99.875; & & & & & \\
\hline 105.75 ; & & & & & \\
\hline 96.875; & & & & & \\
\hline 103.625; & & & & & \\
\hline
\end{tabular}

\section*{zbtprice}
```

    101.125;
    103.125;
    99.375;
    101.0 ;
    101.25;
    96.375;
    102.75 ];
    Settle = datenum('12/18/1997');

```

Set semiannual compounding for the zero curve.
OutputCompounding = 2;
Execute the function
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,... OutputCompounding)
which returns the zero curve at the maturity dates. Note the mean zero rate for the two bonds with the same maturity date*.
```

ZeroRates =
0.0616
0 . 0 6 0 9
0.0658
0 . 0 5 9 0
0.0648
0.0655*
0.0606
0.0601
0.0642
0.0621
0.0627
CurveDates =
729907 (serial date number for 01-Jun-1998)
7 3 0 3 6 4 ~ ( 0 1 - S e p - 1 9 9 9 ) ~
730439 (15-Nov-1999)
730500 (15-Jan-2000)

```

\section*{zbtprice}
\begin{tabular}{ll}
730667 & (30-Jun-2000) \\
730668 & (01-Jul-2000)* \\
730971 & (30-Apr-2001) \\
731032 & (30-Jun-2001) \\
731033 & (01-Jul-2001) \\
731321 & (15-Apr-2002) \\
731336 & (30-Apr-2002)
\end{tabular}

\section*{See Also \\ zbtyield and other functions for Term Structure of Interest Rates}

References
Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York: Irwin Professional Publishing. 1995.

McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. "Calculating Zero Coupon Rates." Swap and Derivative Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994.

Purpose
Syntax

Arguments

Zero curve bootstrapping from coupon bond data given yield
```

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle, OutputCompounding)

```

Coupon bond information used to generate the zero curve. An n-by-2 to n-by-6 matrix where each row describes a bond. The first two columns are required; the rest are optional but must be added in order. All rows in Bonds must have the same number of columns. Columns are
[Maturity CouponRate Face Period Basis EndMonthRule] where

Maturity Maturity date of the bond, as a serial date number. Use datenum to convert date strings to serial date numbers.

CouponRate Coupon rate of the bond, as a decimal fraction.

Face (Optional) Redemption or face value of the bond. Default = 100 .

Period (Optional) Coupons per year of the bond, as an integer. Allowed values are \(0,1,2\) (default), \(3,4,6\), and 12 .

Basis (Optional) Day-count basis of the bond.
\(0=\) actual/actual (default), \(1=30 / 360\)
(SIA), \(2=\) actual \(/ 360,3=\) actual \(/ 365\), \(4=30 / 360\) (PSA), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

\section*{zbtyield}
\begin{tabular}{ll}
Yields & \begin{tabular}{l}
A column vector containing the yield to maturity of each \\
bond in Bonds, respectively. The number of rows (n) \\
must match the number of rows in Bonds.
\end{tabular} \\
Settle & \begin{tabular}{l}
Settlement date, as a scalar serial date number. This \\
represents time zero for deriving the zero curve, and it \\
is normally the common settlement date for all the
\end{tabular} \\
Oonds. \\
OutputCompounding & \begin{tabular}{l}
(Optional) A scalar that sets the compounding \\
frequency per year for the output zero rates in \\
ZeroRates. Allowed values are:
\end{tabular}
\end{tabular}

1 annual compounding
2 semiannual compounding (default)
3 compounding three times per year
4 quarterly compounding
6 bimonthly compounding
12 monthly compounding
-1 continuous compounding

\section*{Description [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,} OutputCompounding) uses the bootstrap method to return a zero curve given a portfolio of coupon bonds and their yields. A zero curve consists of the yields to maturity for a portfolio of theoretical zero-coupon bonds that are derived from the input Bonds portfolio. The bootstrap method that this function uses does not require alignment among the cash-flow dates of the bonds in the input
portfolio. It uses theoretical par bond arbitrage and yield interpolation to derive all zero rates. For best results, use a portfolio of at least 30 bonds evenly spaced across the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero rates for each point along the investment horizon represented by CurveDates; \(m\) is the number of bonds of different maturity dates. In aggregate, the rates in ZeroRates constitute a zero curve.

If more than one bond has the same maturity date, zbtyield returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates; \(m\) is the number of bonds of different maturity dates. These dates begin with the earliest maturity date and end with the latest maturity date Maturity in the Bonds matrix. Use datestr to convert serial date numbers to date strings.

\section*{Examples}

Given data and yields to maturity for 12 coupon bonds, two with the same maturity date; and given the common settlement date
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bonds \(=\) [datenum('6/1/1998') & 0.0475 & 100 & 2 & 0 & \(0 ;\) \\
\hline datenum('7/1/2000') & 0.06 & 100 & 2 & 0 & 0 ; \\
\hline datenum('7/1/2000') & 0.09375 & 100 & 6 & 1 & 0 ; \\
\hline datenum('6/30/2001') & 0.05125 & 100 & 1 & 3 & 1; \\
\hline datenum('4/15/2002') & 0.07125 & 100 & 4 & 1 & 0 ; \\
\hline datenum('1/15/2000') & 0.065 & 100 & 2 & 0 & 0 ; \\
\hline datenum('9/1/1999') & 0.08 & 100 & 3 & 3 & 0 ; \\
\hline datenum('4/30/2001') & 0.05875 & 100 & 2 & 0 & 0 ; \\
\hline datenum('11/15/1999') & 0.07125 & 100 & 2 & 0 & 0 ; \\
\hline datenum('6/30/2000') & 0.07 & 100 & 2 & 3 & 1; \\
\hline datenum('7/1/2001') & 0.0525 & 100 & 2 & 3 & 0 ; \\
\hline datenum('4/30/2002') & 0.07 & 100 & 2 & 0 & 0]; \\
\hline Yields \(=\) [0.0616 & & & & & \\
\hline 0.0605 & & & & & \\
\hline 0.0687 & & & & & \\
\hline 0.0612 & & & & & \\
\hline 0.0615 & & & & & \\
\hline
\end{tabular}

\section*{zbtyield}
\[
\begin{gathered}
0.0591 \\
0.0603 \\
0.0608 \\
0.0655 \\
0.0646 \\
0.0641 \\
0.0627] \\
\text { Settle }=\text { datenum ('12/18/1997'); }
\end{gathered}
\]

Set semiannual compounding for the zero curve.
OutputCompounding = 2 ;
Execute the function
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,... OutputCompounding)
which returns the zero curve at the maturity dates. Note the mean zero rate for the two bonds with the same maturity date*.
```

ZeroRates =
0.0616
0.0575
0.0692
0.0613
0.0616
0.0596*
0.0606
0.0659
0.0650
0.0607
0.0628

```
CurveDates =
```

729907 (serial date number for 01-Jun-1998)
730364 (01-Sep-1999)
730439 (15-Nov-1999)
730500 (15-Jan-2000)

```
\begin{tabular}{ll}
730667 & (30-Jun-2000) \\
730668 & (01-Jul-2000)* \\
730971 & (30-Apr-2001) \\
731032 & (30-Jun-2001) \\
731033 & (01-Jul-2001) \\
731321 & (15-Apr-2002) \\
731336 & (30-Apr-2002)
\end{tabular}

See Also zbtprice and other functions for Term Structure of Interest Rates
References Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York: Irwin Professional Publishing. 1995.

McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. "Calculating Zero Coupon Rates." Swap and Derivative Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994.

\section*{zero2disc}

\section*{Purpose Discount curve given a zero curve}
\begin{tabular}{|c|c|c|}
\hline Syntax & \multicolumn{2}{|l|}{[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle, Compounding, Basis)} \\
\hline \multirow[t]{4}{*}{Arguments} & ZeroRates & A number of bonds (NUMBONDS) by 1 vector of annualized zero rates, as decimal fractions. In aggregate, the rates constitute an implied zero curve for the investment horizon represented by CurveDates. \\
\hline & CurveDates & A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the zero rates. \\
\hline & Settle & A serial date number that is the common settlement date for the zero rates; i.e., the settlement date for the bonds from which the zero curve was bootstrapped. \\
\hline & Compounding & (Optional) A scalar that indicates the compounding frequency per year used for annualizing the input zero rates in ZeroRates. Allowed values are: \\
\hline
\end{tabular}

1 annual compounding
2 semiannual compounding (default)
3 compounding three times per year
4 quarterly compounding
6 bimonthly compounding
12 monthly compounding
365 daily compounding
-1 continuous compounding
Basis (Optional) Day-count basis used for annualizing the input zero rates. \(0=\) actual/actual (default), \(1=30 / 360\)
(SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360\) (PSA), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European),
7 = actual/365 (Japanese).

\section*{Description}
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle, Compounding, Basis) returns a discount curve given a zero curve and its maturity dates.

DiscRates A NUMBONDS-by-1 vector of discount factors, as decimal fractions. In aggregate, the factors in constitute a discount curve for the investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the discount rates. This vector is the same as the input vector CurveDates.

\section*{Examples}

Given a zero curve over a set of maturity dates and a settlement date
```

ZeroRates = [0.0464
0.0509
0.0524
0.0525
0.0531
0.0525
0.0530
0.0531
0.0549
0.0536];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');

```

The zero curve was compounded daily on an actual/ 365 basis.

\section*{zero2disc}
```

InputCompounding = 365;
InputBasis = 3;

```

Execute the function
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,... Settle, Compounding, Basis)
which returns the discount curve DiscRates at the maturity dates CurveDates.
```

DiscRates =
0.9996
0 . 9 9 4 7
0.9896
0.9866
0.9826
0.9787
0.9745
0.9665
0.9552
0.9466
CurveDates =
730796
7 3 0 8 3 1
7 3 0 8 6 6
7 3 0 8 8 7
7 3 0 9 1 4
730943
7 3 0 9 7 1
731027
731098
731167

```

For readability, ZeroRates and DiscRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter ZeroRates as shown, DiscRates may differ due to rounding.

\section*{See Also \\ disc2zero and other functions for Term Structure of Interest Rates}

Purpose
Forward curve given a zero curve

\section*{Syntax}

Arguments
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,
Settle, Compounding, Basis
\begin{tabular}{ll}
ZeroRates & \begin{tabular}{l}
A number of bonds (NUMBONDS) by 1 vector of annualized \\
zero rates, as decimal fractions. In aggregate, the rates \\
constitute an implied zero curve for the investment \\
horizon represented by CurveDates. The first element \\
pertains to forward rates from the settlement date to the \\
first curve date.
\end{tabular} \\
CurveDates & \begin{tabular}{l}
A NUMBONDS-by-1 vector of maturity dates (as serial date \\
numbers) that correspond to the zero rates.
\end{tabular} \\
Settle & \begin{tabular}{l}
A serial date number that is the common settlement date \\
for the zero rates.
\end{tabular} \\
Compounding & \begin{tabular}{l}
(Optional) A scalar that sets the compounding frequency \\
per year used to annualize the input zero rates and the \\
output implied forward rates.Allowed values are:
\end{tabular}
\end{tabular}

1 annual compounding
2 semiannual compounding (default)
3 compounding three times per year
4 quarterly compounding
6 bimonthly compounding
12 monthly compounding
365 daily compounding
-1 continuous compounding
Basis (Optional) Day-count basis used used to construct the input zero and output implied forward rate curves.
\(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

\section*{Description}
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle, Compounding, Basis) returns an implied forward rate curve given a zero curve and its maturity dates.

ForwardRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the rates in ForwardRates constitute a forward curve over the dates in CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the forward rates in. This vector is the same as the input vector CurveDates.

\section*{Examples}

Given a zero curve over a set of maturity dates, a settlement date, and a compounding rate, compute the forward rate curve.
```

ZeroRates = [0.0458
0.0502
0.0518
0.0519
0.0524
0.0519
0.0523
0.0525
0 . 0 5 4 1
0.0529];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')
datenum('25-Jun-2001')
datenum('04-Sep-2001')
datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');
Compounding = 1;

```

Execute the function
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,... Settle, Compounding)
which returns the forward rate curve ForwardRates at the maturity dates CurveDates.

ForwardRates =
0.0458
0.0506
0.0535
0.0522
0.0541
0.0498
0.0544
0.0531
0.0594
0.0476

CurveDates =
730796
730831
730866
730887
730914
730943
730971
731027
731098
731167
For readability, ZeroRates and ForwardRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter ZeroRates as shown, ForwardRates may differ due to rounding.

See Also
fwd2zero and other functions for Term Structure of Interest Rates
Purpose Par yield curve given a zero curve
Syntax \begin{tabular}{c}
{\([P a r R a t e s, ~ C u r v e D a t e s] ~=~ z e r o 2 p y l d(Z e r o R a t e s, ~ C u r v e D a t e s, ~ S e t t l e, ~\)} \\
Compounding, Basis, OutputCompounding)
\end{tabular}
\begin{tabular}{ll}
Arguments & ZeroRates \\
CurveDates & \begin{tabular}{l}
A number of bonds (NUMBONDS) by 1 vector of annualized \\
zero rates, as decimal fractions. In aggregate, the rates \\
constitute an implied zero curve for the investment \\
horizon represented by CurveDates.
\end{tabular} \\
Settle & \begin{tabular}{l}
A NUMBONDS-by-1 vector of maturity dates (as serial date \\
numbers) that correspond to the zero rates.
\end{tabular} \\
Compounding & \begin{tabular}{l}
A serial date number that is the common settlement date \\
for the zero rates. \\
(Optional) A scalar that sets the rate at which the implied
\end{tabular} \\
zero rates are compounded when annualized. Allowed \\
values are:
\end{tabular}

1 annual compounding
2 semiannual compounding (default)
3 compounding three times per year
4 quarterly compounding
6 bimonthly compounding
12 monthly compounding
365 daily compounding
-1 continuous compounding
Basis (Optional) Day-count basis used to annualize the implied zero rates. \(0=\) actual/actual (default), \(1=30 / 360\) (SIA), \(2=\mathrm{actual} / 360,3=\mathrm{actual} / 365,4=30 / 360(\mathrm{PSA})\), \(5=30 / 360\) (ISDA), \(6=30 / 360\) (European), 7 = actual/365 (Japanese).

OutputCompounding (Optional) Value representing the rate at which the par rates are compounded. Default = Compounding.

\section*{Description}
[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle, Compounding, Basis, OutputCompounding) returns a par yield curve given a zero curve and its maturity dates.

ParRates A NUMBONDS-by-1 vector of annualized par yields, as decimal fractions. (Par yields = coupon rates.) In aggregate, the yield rates in ParRates constitute a par yield curve for the investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the par yield rates. This vector is the same as the input vector CurveDates.

\section*{Examples \\ Given}
- A zero curve over a set of maturity dates and
- A settlement date
- Annual compounding for the input zero curve and monthly compounding for the output par rates
compute a par yield curve.
```

ZeroRates = [0.0457
0.0487
0.0506
0.0507
0.0505
0.0504
0.0506
0.0516
0.0539
0.0530];
CurveDates = [datenum('06-Nov-2000')
datenum('11-Dec-2000')
datenum('15-Jan-2001')
datenum('05-Feb-2001')
datenum('04-Mar-2001')
datenum('02-Apr-2001')
datenum('30-Apr-2001')

```
```

        datenum('25-Jun-2001')
        datenum('04-Sep-2001')
        datenum('12-Nov-2001')];
    Settle = datenum('03-Nov-2000');
Compounding = 1;
OutputCompounding = 12;
[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle, Compounding, [] , OutputCompounding)
ParRates =
0.0479
0.0511
0.0530
0.0531
0.0526
0.0524
0.0525
0.0534
0.0555
0.0543
CurveDates =
7 3 0 7 9 6
7 3 0 8 3 1
7 3 0 8 6 6
730887
7 3 0 9 1 4
730943
7 3 0 9 7 1
7 3 1 0 2 7
731098
7 3 1 1 6 7

```

For readability, ZeroRates and ParRates are shown only to the basis point. However, MATLAB computed them at full precision. If you enter ZeroRates as shown, ParRates may differ due to rounding.

\section*{zero2pyld}

\section*{See Also}
pyld2zero and other functions for Term Structure of Interest Rates

\section*{Bibliography}

\author{
"Bond Pricing and Yields" on page A-2 \\ "Term Structure of Interest Rates" on page A-2 \\ "Derivatives Pricing and Yields" on page A-2 \\ "Portfolio Analysis" on page A-3 \\ "Other References" on page A-3
}

For the well-known algorithms and formulas used in the Financial Toolbox (such as how to compute a loan payment given principal, interest rate, and length of the loan), no references are given here. The references here pertain to less common formulas.

\section*{Bond Pricing and Yields}

The pricing and yield formulas for fixed-income securities come from:
Mayle, Jan. Standard Securities Calculation Methods. New York: Securities Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

In many cases these formulas compute the price of a security given yield, dates, rates, and other data. These formulas are nonlinear, however; so when solving for an independent variable within a formula, the Financial Toolbox uses Newton's method. See any elementary numerical methods textbook for the mathematics underlying Newton's method.

\section*{Term Structure of Interest Rates}

The formulas and methodology for term structure functions come from:
Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed. New York: Irwin Professional Publishing. 1995. ISBN 0-7863-0001-9.

McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. "Calculating Zero Coupon Rates." Swap and Derivative Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994. ISBN 1-55738-542-4.

\section*{Derivatives Pricing and Yields}

The pricing and yield formulas for derivative securities come from:
Chriss, Neil A. "Black-Scholes and Beyond: Option Pricing Models," Chicago: Irwin Professional Publishing. 1997. ISBN 0-7863-1025-1.

Cox, J.; S. Ross; and M. Rubenstein, "Option Pricing: A Simplified Approach", Journal of Financial Economics 7, Sept. 1979, pp. 229-263

Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003, ISBN 0-13-009056-5

\section*{Portfolio Analysis}

The Markowitz model is used for portfolio analysis computations. For a discussion of this model see Chapter 7 of:

Bodie, Zvi, Alex Kane, and Alan J. Marcus. Investments. Burr Ridge, IL: Irwin. 2nd. ed., 1993, ISBN 0-256-08342-8.

To solve the quadratic minimization problem associated with finding the efficient frontier, the toolbox uses the fmincon function (finds the constrained minimum of a function of several variables) in the MATLAB Optimization Toolbox. See that toolbox documentation for more details.

\section*{Other References}

Other references include:
Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2, Spring 1995. This addendum explains and clarifies the end-of-month rule.

Brealey, Richard A., and Stewart C. Myers. Principles of Corporate Finance. New York: McGraw-Hill. 4th ed., 1991, ISBN 0-07-007405-4.

Daigler, Robert T. Advanced Options Trading. Chicago: Probus Publishing Co. 1994, ISBN 1-55738-552-1.

A Dictionary of Finance. Oxford: Oxford University Press. 1993, ISBN 0-19-285279-5.

Fabozzi, Frank J., and T. Dessa Fabozzi, eds. The Handbook of Fixed-Income Securities. Burr Ridge, IL: Irwin. 4th ed., 1995, ISBN 0-7863-0001-9.

Fitch, Thomas P. Dictionary of Banking Terms. Hauppauge, NY: Barron's. 2nd ed., 1993, ISBN 0-8120-1530-4.

Hill, Richard O., Jr. Elementary Linear Algebra. Orlando, FL: Academic Press. 1986, ISBN 0-12-348460-X

Luenberger, David G., Investment Science, Oxford University Press, 1998. ISBN: 0195108094

Marshall, John F., and Vipul K. Bansal. Financial Engineering: A Complete Guide to Financial Innovation. New York: New York Institute of Finance. 1992, ISBN 0-13-312588-2.

Sharpe, William F. Macro-Investment Analysis. An "electronic work-in-progress" published on the World Wide Web, 1995, at http://www.stanford.edu/~wfsharpe/mia/mia.htm.

Sharpe, William F., and Gordon J. Alexander. Investments. Englewood Cliffs, NJ: Prentice-Hall. 4th ed., 1990, ISBN 0-13-504382-4.

Stigum, Marcia, with Franklin Robinson. Money Market and Bond Calculations. Richard D. Irwin. 1996, ISBN 1-55623-476-7.
\(\left.\begin{array}{ll}\text { Active return } & \begin{array}{l}\text { Amount of return achieved in excess of the return produced by an appropriate } \\ \text { benchmark (e.g., an index portfolio). }\end{array} \\ \text { Active risk } & \begin{array}{l}\text { Standard deviation of the active return. Also known as the tracking error. }\end{array} \\ \text { American option } & \begin{array}{l}\text { An option that can be exercised any time until its expiration date. Contrast } \\ \text { with European option. }\end{array} \\ \text { Amortization } & \begin{array}{l}\text { Reduction in value of an asset over some period for accounting purposes. } \\ \text { Generally used with intangible assets. Depreciation is the term used with fixed } \\ \text { or tangible assets. }\end{array} \\ \text { Annuity } & \begin{array}{l}\text { A series of payments over a period of time. The payments are usually in equal } \\ \text { amounts and usually at regular intervals such as quarterly, semi-annually, or } \\ \text { annually. }\end{array} \\ \text { Arbitrage } & \begin{array}{l}\text { The purchase of securities on one market for immediate resale on another } \\ \text { market in order to profit from a price or currency discrepancy. }\end{array} \\ \text { Beta point } & \begin{array}{l}\text { One hundredth of one percentage point, or 0.0001. }\end{array} \\ \text { Binomial model } & \begin{array}{l}\text { The price volatility of a financial instrument relative to the price volatility of a } \\ \text { market or index as a whole. Beta is most commonly used with respect to } \\ \text { equities. A high-beta instrument is riskier than a low-beta instrument. }\end{array} \\ \text { A method of pricing options or other equity derivatives in which the probability } \\ \text { over time of each possible price follows a binomial distribution. The basic }\end{array}\right\}\)
\begin{tabular}{|c|c|}
\hline Call & a. An option to buy a certain quantity of a stock or commodity for a specified price within a specified time. See Put. b. A demand to submit bonds to the issuer for redemption before the maturity date. c. A demand for payment of a debt. d. A demand for payment due on stock bought on margin. \\
\hline Callable bond & A bond that allows the issuer to buy back the bond at a predetermined price at specified future dates. The bond contains an embedded call option; i.e., the holder has sold a call option to the issuer. See Puttable bond. \\
\hline Candlestick chart & A financial chart usually used to plot the high, low, open, and close price of a security over time. The body of the "candle" is the region between the open and close price of the security. Thin vertical lines extend up to the high and down to the low, respectively. If the open price is greater than the close price, the body is empty. If the close price is greater than the open price, the body is filled. See also High-low-close chart. \\
\hline Cap & Interest-rate option that guarantees that the rate on a floating-rate loan will not exceed a certain level. \\
\hline Cash flow & Cash received and paid over time. \\
\hline Collar & Interest-rate option that guarantees that the rate on a floating-rate loan will not exceed a certain upper level nor fall below a lower level. It is designed to protect an investor against wide fluctuations in interest rates. \\
\hline Convexity & A measure of the rate of change in duration; measured in time. The greater the rate of change, the more the duration changes as yield changes. \\
\hline Correlation & The simultaneous change in value of two random numeric variables. \\
\hline Correlation coefficient & A statistic in which the covariance is scaled to a value between minus one (perfect negative correlation) and plus one (perfect positive correlation). \\
\hline Coupon & Detachable certificate attached to a bond that shows the amount of interest payable at regular intervals, usually semi-annually.Originally coupons were actually attached to the bonds and had to be cut off or "clipped" to redeem them and receive the interest payment. \\
\hline Coupon dates & The dates when the coupons are paid. Typically a bond pays coupons annually or semi-annually. \\
\hline Coupon rate & The nominal interest rate that the issuer promises to pay the buyer of a bond. \\
\hline
\end{tabular}

\section*{Glossary-2}
\(\left.\begin{array}{ll}\text { Covariance } & \begin{array}{l}\text { A measure of the degree to which returns on two assets move in tandem. A } \\ \text { positive covariance means that asset returns move together; a negative } \\ \text { covariance means they vary inversely. }\end{array} \\ \text { Delta } & \begin{array}{l}\text { The rate of change of the price of a derivative security relative to the price of } \\ \text { the underlying asset; i.e., the first derivative of the curve that relates the price } \\ \text { of the derivative to the price of the underlying security. }\end{array} \\ \text { Reduction in value of fixed or tangible assets over some period for accounting } \\ \text { purposes. See Amortization. }\end{array}\right]\)
\begin{tabular}{|c|c|}
\hline Future value & The value that a sum of money (the present value) earning compound interest will have in the future. \\
\hline Gamma & The rate of change of delta for a derivative security relative to the price of the underlying asset; i.e., the second derivative of the option price relative to the security price. \\
\hline Greeks & Collectively, "greeks" refer to the financial measures delta, gamma, lambda, rho, theta, and vega, which are sensitivity measures used in evaluating derivatives. \\
\hline Hedge & A securities transaction that reduces or offsets the risk on an existing investment position. \\
\hline High-low-close chart & A financial chart usually used to plot the high, low, open, and close price of a security over time. Plots are vertical lines whose top is the high, bottom is the low, open is a short horizontal tick to the left, and close is a short horizontal tick to the right. \\
\hline Implied volatility & For an option, the variance that makes a call option price equal to the market price. Given the option price, strike price, and other factors, the Black-Scholes model computes implied volatility. \\
\hline Internal rate of return & \begin{tabular}{l}
a. The average annual yield earned by an investment during the period held. \\
b. The effective rate of interest on a loan. c. The discount rate in discounted cash flow analysis. d. The rate that adjusts the value of future cash receipts earned by an investment so that interest earned equals the original cost. See Yield to maturity.
\end{tabular} \\
\hline Issue date & The date a security is first offered for sale. That date usually determines when interest payments, known as coupons, are made. \\
\hline Ito process & Statistical assumptions about the behavior of security prices. For details, see the book by Hull listed in the "Bibliography". \\
\hline Lambda & The percentage change in the price of an option relative to a \(1 \%\) change in the price of the underlying security. Also known as Elasticity. \\
\hline Long position & Outright ownership of a security or financial instrument. The owner expects the price to rise in order to make a profit on some future sale. \\
\hline Long rate & The yield on a zero-coupon Treasury bond. \\
\hline Macaulay duration & A widely used measure of price sensitivity to yield changes developed by Frederick Macaulay in 1938. It is measured in years and is a weighted \\
\hline
\end{tabular}

\section*{Glossary-4}
average-time-to-maturity of an instrument. The Macaulay duration of an income stream, such as a coupon bond, measures how long, on average, the owner waits before receiving a payment. It is the weighted average of the times payments are made, with the weights at time \(T\) equal to the present value of the money received at time T.
Markowitz model A model for selecting an optimum investment portfolio, devised by H. M. Markowitz. It uses a discrete-time, continuous-outcome approach for modeling investment problems, often called the mean-variance paradigm. See Efficient frontier.

Maturity date
Mean

Modified
duration
Monte-Carlo simulation chart

Normal (bell-shaped) distribution

Odd first or last period

Moving average A price average that is adjusted by adding other parametrically determined prices over some time period.

Moving-averages A financial chart that plots leading and lagging moving averages for prices or values of an asset.
The date when the issuer returns the final face value of a bond to the buyer.
a. A number that typifies a set of numbers, such as a geometric mean or an arithmetic mean. \(\mathbf{b}\). The average value of a set of numbers.
The Macaulay duration discounted by the per-period interest rate; i.e., divided by (1+rate/frequency).

A mathematical modeling process. For a model that has several parameters with statistical properties, pick a set of random values for the parameters and run a simulation. Then pick another set of values, and run it again. Run it many times (often 10,000 times) and build up a statistical distribution of outcomes of the simulation. This distribution of outcomes is then used to answer whatever question you are asking.

In statistics, a theoretical frequency distribution for a set of variable data, usually represented by a bell-shaped curve symmetrical about the mean.

Fixed-income securities may be purchased on dates that do not coincide with coupon or payment dates. The length of the first and last periods may differ from the regular period between coupons, and thus the bond owner is not entitled to the full value of the coupon for that period. Instead, the coupon is pro-rated according to how long the bond is held during that period.
\(\left.\begin{array}{ll}\text { Option } & \begin{array}{l}\text { A right to buy or sell specific securities or commodities at a stated price } \\ \text { (exercise or strike price) within a specified time. An option is a type of } \\ \text { derivative. }\end{array} \\ \text { Par value } & \begin{array}{l}\text { The maturity or face value of a security or other financial instrument. }\end{array} \\ \text { Par yield curve } & \begin{array}{l}\text { The yield curve of bonds selling at par, or face, value. }\end{array} \\ \text { Point and figure } \\ \text { chart } & \begin{array}{l}\text { A financial chart usually used to plot asset price data. Upward price } \\ \text { movements are plotted as X's and downward price movements are plotted as } \\ \text { O's. }\end{array} \\ \text { Present value } & \begin{array}{l}\text { Today's value of an investment that yields some future value when invested to } \\ \text { earn compounded interest at a known interest rate.; i.e., the future value at a } \\ \text { known period in time discounted by the interest rate over that time period. }\end{array} \\ \text { Principal value } & \begin{array}{l}\text { See Par value. }\end{array} \\ \text { Purchase price } & \begin{array}{l}\text { Price actually paid for a security. Typically the purchase price of a bond is not } \\ \text { the same as the redemption value. }\end{array} \\ \text { Puttable bond } & \begin{array}{l}\text { An option to sell a stipulated amount of stock or securities within a specified } \\ \text { time and at a fixed exercise price. See Call. }\end{array} \\ \text { A bond that allows the holder to redeem the bond at a predetermined price at } \\ \text { specified future dates. The bond contains an embedded put option; i.e., the }\end{array}\right\}\)

\section*{Glossary-6}
\begin{tabular}{|c|c|}
\hline Settlement date & The date when money first changes hands; i.e., when a buyer actually pays for a security. It need not coincide with the issue date. \\
\hline Short rate & The annualized one-period interest rate. \\
\hline Short sale, short position & The sale of a security or financial instrument not owned, in anticipation of a price decline and making a profit by purchasing the instrument later at a lower price, and then delivering the instrument to complete the sale. See Long position. \\
\hline Spot curve, spot yield curve & See Zero curve. \\
\hline Spot rate & The current interest rate appropriate for discounting a cash flow of some given maturity. \\
\hline Spread & For options, a combination of call or put options on the same stock with differing exercise prices or maturity dates. \\
\hline Standard deviation & A measure of the variation in a distribution, equal to the square root of the arithmetic mean of the squares of the deviations from the arithmetic mean; the square root of the variance. \\
\hline Stochastic & Involving or containing a random variable or variables; involving chance or probability. \\
\hline Straddle & A strategy used in trading options or futures. It involves simultaneously purchasing put and call options with the same exercise price and expiration date, and it is most profitable when the price of the underlying security is very volatile. \\
\hline Strike & Exercise a put or call option. \\
\hline Strike price & See Exercise price. \\
\hline Swap & A contract between two parties to exchange cash flows in the future according to some formula. \\
\hline Swaption & A swap option; an option on an interest-rate swap. The option gives the holder the right to enter into a contracted interest-rate swap at a specified future date. See Swap. \\
\hline Term structure & The relationship between the yields on fixed-interest securities and their maturity dates. Expectation of changes in interest rates affects term structure, as do liquidity preferences and hedging pressure. A yield curve is one representation in the term structure. \\
\hline
\end{tabular}
\begin{tabular}{ll}
Theta & \begin{tabular}{l}
The rate of change in the price of a derivative security relative to time. Theta \\
is usually very small or negative since the value of an option tends to drop as \\
it approaches maturity.
\end{tabular} \\
Tracking error & \begin{tabular}{l}
See active risk.
\end{tabular} \\
Treasury bill & \begin{tabular}{l}
Short-term U.S. government security issued at a discount from the face value \\
and paying the face value at maturity.
\end{tabular} \\
Treasury bond & \begin{tabular}{l}
Long-term debt obligation of the U.S. government that makes coupon \\
payments semi-annually and is sold at or near par value in \$1000 \\
denominations or higher. Face value is paid at maturity.
\end{tabular} \\
Variance & \begin{tabular}{l}
The dispersion of a variable. The square of the standard deviation.
\end{tabular} \\
Vega & \begin{tabular}{l}
The rate of change in the price of a derivative security relative to the volatility \\
of the underlying security. When vega is large the security is sensitive to small \\
changes in volatility.
\end{tabular} \\
Yolatility & \begin{tabular}{l}
a. Another general term for sensitivity. b. The standard deviation of the \\
annualized continuously compounded rate of return of an asset. c. A measure \\
of uncertainty or risk.
\end{tabular} \\
Yield curve & \begin{tabular}{l}
a. Measure of return on an investment, stated as a percentage of price. Yield \\
can be computed by dividing return by purchase price, current market value, \\
or other measure of value. b. Income from a bond expressed as an annualized
\end{tabular} \\
percentage rate. c. The nominal annual interest rate that gives a future value \\
of the purchase price equal to the redemption value of the security. Any coupon \\
payments determine part of that yield.
\end{tabular}

\section*{Glossary-8}

Zero-coupon bond, or Zero

A bond that, instead of carrying a coupon, is sold at a discount from its face value, pays no interest during its life, and pays the principal only at maturity.

\section*{Numerics}

1900 date system 5-193, 5-295
1904 date system 5-193, 5-295
360-day year 5-142
365-day year 5-149

\section*{A}
abs2active 5-14
accrued interest 2-21, 5-21, 5-23
computing fractional period 5-19
acrubond 5-21
acrudisc 5-23
active return 3-20
active risk 3-20
active2abs 5-16
actual days
between dates 5-150
adding a scalar and a matrix 1-8
adding matrices 1-7
advance payments, periodic payment given 5-205
after-tax rate of return 5-265
algebra, linear 1-8, 1-13
American options 2-3, 2-36
amortization 1-21, 2-18, 2-19, 5-24
amortize 5-24
analysis models for equity derivatives 2-34
analyzing
and computing cash flows 2-16
equity derivatives 2-33
portfolios 2-37
annuity 2-18
payment of with odd first period 5-206
periodic interest rate of 5-27
periodic payment of loan or 5-207
annurate 5-27
annuterm 5-28
apostrophe or prime character (') 1-6
arguments
function return 1-20
interest rate 1-21
matrices as, limitations 1-21
vectors as, limitations 1-21
array operations 1-16
ASCII character 1-19
asset covariance matrix with exponential weighting 5-168
asset life 1-21
axis labels, converting 5-125

\section*{B}
bank format 5-122
base date 5-132
basis 2-21
basis, day-count 5-153
beytbill 5-29
binomial
functions 2-3
model 2-35
put and call pricing 5-30
tree, building 2-36
binprice 5-30
Black's option pricing 5-34
Black-Scholes
elasticity 5-41
functions 2-3
implied volatility 5-39
model 2-34
options 4-21, 4-23
put and call pricing 5-43
sensitivity to
interest rate change 5-45
time-until-maturity change 5-47
underlying delta change 5-38
underlying price change 5-36
underlying price volatility 5-49
blkimpv 5-32
blkprice 5-34
blsdelta 5-36
blsgamma 5-38
blsimpv 5-39
blslambda 5-41
blsprice 5-43
blsrho 5-45
blstheta 5-47
blsvega 5-49
bndconvp 5-50
bndconvy 5-53
bnddurp 5-56
bnddury 5-59
bndprice 5-62
bndspread 5-65
bndyield 5-70
bolling 5-73
Bollinger band chart 2-14
bond
convexity 4-3
duration 4-3
equivalent yield for Treasury bill 5-29
portfolio
constructing to hedge against duration and convexity 4-6
visualizing sensitivity of price to parallel shifts in the yield curve \(4-8\)
sensitivity of prices to changes in interest rates 4-3
zero-coupon 5-307
bootstrapping 2-31, 5-277, 5-306, 5-311
building a binomial tree 2-36
busdate 5-75
business date
last of month 5-189
business day
next 2-10, 5-75
previous 5-75
business days 5-187

\section*{c}
call and put pricing
Black-Scholes 5-43
candle 5-77
candlestick chart 5-77
capital allocation line 3-3
cash flow
analyzing and computing 2-16
convexity 5-83
dates 2-11, 5-84
duration 5-87
future value of varying 5-178
internal rate of return 5-186
internal rate of return for nonperiodic 5-297
irregular 5-178
modified internal rate of return 5-196
negative 2-16
portfolio form of amounts 5-88
present value of varying 5-255
sensitivity of \(2-18\)
uniform payment equal to varying 5-208
cell array 4-16
cfamounts 5-78
cfconv 5-83
cfdates 5-84
cfdur 5-87
cfport 5-88
cftimes 5-91

\section*{Index-2}
character array
strings stored as 1-19
character, ASCII 1-19
chart
Bollinger band 2-14
candlestick 5-77
high, low, open, close 5-183
leading and lagging moving averages 5-199
point and figure 5-219
charting financial data 2-12
colon (:) 1-6
commutative law 1-8, 1-13
computing
cash flows 2-16
dot products of vectors 1-10
yields for fixed-income securities 2-20
constraint functions 3-14
constraint matrix 3-17
constructing
a bond portfolio to hedge against duration and convexity 4-6
greek-neutral portfolios of European stock options 4-12
conventions
SIA 2-20
conversions
currency 2-12
date input 2-5
date output 2-7
converting
and handling dates 2-4
axis labels 5-125
convexity 4-3
cash flow 5-83
constructing a bond portfolio to hedge against 4-6
portfolio 4-4, 4-6
corr2cov 5-93
coupon bond
prices to zero curve 5-306
yields to zero curve 5-311
coupon date
after settlement date 5-98
days between 5-112, 5-115
coupon dates 2-27
coupon payments remaining until maturity 5-95
coupon period
containing settlement date 5-118
fraction of 5-18
coupons payable between dates 5-95
cov2corr 5-94
covariance matrix 3-5
covariance matrix with exponential weighting 5-168
cpncount 5-95
cpndaten 5-98
cpndatenq 5-101
cpndatep 5-105
cpndatepq 5-108
cpndaysn 5-112
cpndaysp 5-115
cpnpersz 5-118
cur2frac 5-121
cur2str 5-122
currency
converting 2-12
decimal 5-172
formatting 2-12
fractional 5-121, 5-172
values 5-121
current date 5-276
and time 2-8, 5-201

Index-3

\section*{D}
date
base 5-132
components 5-138
conversions 2-5
current 2-8, 5-201, 5-276
end of month 5-166
first business, of month 5-170
formats 2-4
hour of 5-185
input conversions 2-5
last date of month 5-166
last weekday in month 5-191
maturity 2-21
minute of 5-195
number 2-4, 5-132
displaying as string 5-127
Excel to MATLAB 5-295
indices of in matrix 5-128
MATLAB to Excel 5-193
of day in future or past month 5-129
of future or past workday 5-140
output conversions 2-7
seconds of 5-264
starting, add month to 5-129
string 2-4, 5-135
vector 5-138
year of 5-299
date 2-8
date of specific weekday in month 5-202
date system
19005-193, 5-295
1904 5-193, 5-295
date2time 5-123
dateaxis 5-125
datedisp 5-127
datefind 5-128
datemnth 5-129
datenum 5-132
dates
actual days between 5-150
business days 5-187
cash-flow 2-11, 5-84
coupon 2-27
days between 5-142, 5-149, 5-150, 5-151, 5-153
determining 2-9
first coupon 2-20
fraction of year between 5-301
handling and converting 2-4
investment horizon 2-31
issue 2-20
last coupon 2-20
number of months between 5-198
quasi-coupon 2-20
settlement 2-20
vector of 1-20
working days between 5-294
datestr 5-135
datevec 5-138
datewrkdy 5-140
day
date of specific weekday in month 5-202
of month 5-141
of month, last 5-167
of the week 5-292
day 5-141
day-count basis 5-153
day-count convention 2-21
days
between
coupon date and settlement date 5-115
dates 5-142, 5-149, 5-150, 5-151, 5-153, 5-294
settlement date and next coupon date 5-112

\section*{Index-4}
business 5-187
holidays 5-184
in coupon period containing settlement date 5-118
last business date of month 5-189
last weekday in month 5-191
nontrading 5-184
number of, in year 5-300
days360 5-142
days360e 5-143
days360isda 5-145
days360psa 5-147
days365 5-149
daysact 5-150
daysadd 5-151
daysdif 5-153
dec2thirtytwo 5-155
decimal currency 5-172
to fractional currency 5-121
declining-balance depreciation
fixed 2-18, 5-156
general 2-18, 5-157
definitions 1-4
delta 2-33
change, Black-Scholes sensitivity to underlying 5-38
depfixdb 5-156
depgendb 5-157
deprdv 5-158
depreciable value, remaining 5-158
depreciation 2-18
fixed declining-balance 2-18, 5-156
general declining-balance 2-18, 5-157
straight-line 2-18, 5-160
sum of years' digits 2-18, 5-159
depsoyd 5-159
depstln 5-160
derivatives
equity, pricing and analyzing 2-33
sensitivity measures for 2-33
determining dates 2-9
disc2zero 5-161
discount curve
from zero curve 5-316
to zero curve 5-161
discount rate of a security 5-164
discount security 5-23
future value of 5-176
price of 5-249
yield of 5-302
discrate 5-164
dividing matrices 1-13
dot products of vectors 1-10
duration
cash-flow and modified 5-87
constructing a bond portfolio to hedge against 4-6
for fixed-income securities 2-29
Macaulay 2-29
modified 2-29
portfolio 4-4, 4-6

\section*{E}
effective rate of return 5-165
efficient frontier 3-5
plotting an 4-19
tracking error 3-20
effrr 5-165
elasticity
Black-Scholes 5-41
element-by-element 1-7
operating 1-16
elements, referencing matrix 1-4

Index-5
end-of-month rule 2-23
enlarging matrices 1-5
eomdate 5-166
eomday 5-167
equations
solving simultaneous linear 1-13
equity derivatives 2-33
analysis models for 2-34
European options 2-3
constructing greek-neutral portfolios of 4-12
ewstats 5-168
Excel date number
from MATLAB date number 5-193
to MATLAB date number 5-295
exponential weighting of covariance matrix 5-168

\section*{F}
fbusdate 5-170
financial data
charting 2-12
first business date of month 5-170
first coupon date \(2-20\)
fixed declining-balance depreciation 2-18, 5-156
fixed periodic payments
future value with 5-177
fixed-income securities
cash-flow dates 5-84
Macaulay and modified durations for 2-29
pricing 2-28
pricing and computing yields for 2-20
terminology 2-20
yield functions for 2-28
fixed-income sensitivities 2-29
formats
bank 5-122
date 2-4
formatting currency and charting financial data 2-12
forward curve
from zero curve 5-319
to zero curve 5-180
frac2cur 5-172
fraction of
coupon period 5-18
year between dates 5-301
fractional currency 5-121, 5-172
frontcon 3-5, 5-173
frontier
plotting an efficient 4-19
frontier, efficient 3-5
function
return arguments 1-20
future month, date of day in 5-129
future value \(2-17,5-28\)
of discounted security 5-176
of varying cash flow 5-178
with fixed periodic payments 5-177
fvdisc 5-176
fvfix 5-177
fvvar 5-178
fwd2zero 5-180

\section*{G}
gamma 2-33
general declining-balance depreciation 2-18, 5-157
generating and referencing matrix elements 1-6
graphics
producing 4-19
three-dimensional 4-12
greek-neutral portfolios, constructing 4-12

\section*{Index-6}
greeks 2-33
neutrality 4-12

\section*{H}
handling and converting dates 2-4
hedging 4-3
a bond portfolio against duration and convexity 4-6
high, low, open, close chart 5-183
highlow 5-183
holidays 2-10
holidays 5-184
holidays and nontrading days 5-184
hour 5-185
hour of date or time 5-185

\section*{I}
identity matrix 1-13
implied volatility 2-34
Black-Scholes 5-39
indices
of date numbers in matrix 5-128
of nonrepeating integers in matrix 5-128
indifference curve 3-8
inner dimension rule 1-8
input
conversions 2-5
string 1-19
interest 5-24
accrued 5-21, 5-23
on loan 2-18
interest rate swap 4-16
interest rates
arguments 1-21
Black-Scholes sensitivity to change 5-45
of annuity, periodic 5-27
rate of return 2-16
risk-free 4-24
sensitivity of bond prices to changes in 4-3
term structure 2-2, 2-30
internal rate of return 5-186
for nonperiodic cash flow 5-297
modified 5-196
inversion, matrix 1-13
investment horizon 2-31
irr 5-186
isbusday 5-187
issue date 2-20
Ito process 2-34

\section*{L}
lagging and leading moving averages chart 5-199
lambda 2-33
last
business date of month 5-189
date of month 5-166
day of month 5-167
weekday in month 5-191
last coupon date 2-20
lbusdate 5-189
leading and lagging moving averages chart 5-199
left division 1-16
leverage of an option 5-41
linear algebra 1-8, 1-13
linear equations 4-7
solving simultaneous 1-13
system of 1-13
loan
interest on 2-18
payment with odd first period 5-206
periodic payment of 5-207
lweekdate 5-191

\section*{M}
m2xdate 5-193
Macaulay duration 4-3
for fixed-income securities 2-29
MATLAB
date number
from Excel date number 5-295
to Excel date number 5-193
matrices
adding and subtracting 1-7
as arguments, limitations 1-21
dividing 1-13
enlarging 1-5
multiplying 1-8, 1-11
multiplying vectors and 1-10
of string input 1-19
singular 1-13
square \(1-13\)
transposing 1-6
matrix 1-4
adding or subtracting a scalar 1-8
algebra refresher 1-7
covariance 5-168
elements
generating 1-6
referencing 1-4
identity 1-13
indices of date numbers 5-128
indices of integers in 5-128
inversion 1-13
multiplying by a scalar 1-12
numbers and strings in a 1-20
maturity
price with interest at 5-251
yield of a security paying interest at 5-303
maturity date 2-21
minute 5-195
minute of date or time 5-195
mirr 5-196
modified duration 4-3, 5-87
for fixed-income securities 2-29
modified internal rate of return 5-196
month
add, to starting date 5-129
date of specific weekday 5-202
day of 5-141
first business date of 5-170
last business date 5-189
last date of 5-166
last day of 5-167
month 5-197
months
last weekday in 5-191
number of months between dates 5-198
months 5-198
movavg 5-199
moving averages chart 5-199
multiplying
a matrix by a scalar 1-12
matrices 1-8
two matrices 1-11
vectors 1-9
vectors and matrices \(1-10\)

\section*{N}
names
variable 1-7
NaN 2-25
negative cash flows 2-16
Newton's method 2-28

\section*{Index-8}

\section*{next}
business day 2-10
coupon date after settlement date 5-98
or previous business day 5-75
nominal rate of return 5-200
nomrr 5-200
nontrading days 2-10, 5-184
notation 1-4
row, column 1-4
now 5-201
number of
days in year 5-300
periods to obtain value 5-28
whole months between dates 5-198
numbers
and strings in a matrix 1-20
date 2-4
nweekdate 5-202

\section*{0}
odd first period
payment of loan or annuity with 5-206
operating element-by-element 1-16
operations, array 1-16
opprofit 5-204
optimal portfolio 3-2
option
leverage of 5-41
plotting sensitivities of 4-21
plotting sensitivities of a portfolio of 4-23
pricing
Black's model 5-34
profit 5-204
output conversions, date 2-7

\section*{P}
par value 2-21
par yield curve
from zero curve 5-322
to zero curve 5-257
past month, date of day in 5-129
payadv 5-205
payment
of loan or annuity with odd first period 5-206
periodic, given number of advance payments 5-205
periodic, of loan or annuity 5-207
uniform, equal to varying cash flow 5-208
payodd 5-206
payper 5-207
payuni 5-208
pcalims 5-209
pcgcomp 5-212
pcglims 5-214
pcpval 5-217
period 2-21
periodic interest rate of annuity 5-27
periodic payment
future value with fixed 5-177
given advance payments 5-205
of loan or annuity 5-207
present value with fixed 5-254
pivot year 5-132
plotting
efficient frontier 4-19
sensitivities of a portfolio of options 4-23
sensitivities of an option 4-21
point and figure chart 5-219
pointfig 5-219
portalloc 3-9, 3-10, 5-220
portcons 3-14, 5-223
portfolio
convexity 4-4, 4-6
duration 4-4, 4-6
expected rate of return 5-241
of options, plotting sensitivities of 4-23
optimal 3-2
optimization 3-3
risks, returns, and weights
randomized 5-230
selection 3-8
portfolios
analyzing 2-37
of European stock options constructing greek-neutral 4-12
portopt 5-227
portrand 5-230
portsim 5-231
portstats 5-241
portvrisk 5-243
prbyzero 5-245
prdisc 5-249
present value 2-17
of varying cash flow 5-255
with fixed periodic payments 5-254
previous quasi coupon date 5-109
price
change, Black-Scholes sensitivity to underlying 5-36
of discounted security 5-249
of Treasury bill 5-253
volatility, Black-Scholes sensitivity to underlying 5-49
with interest at maturity 5-251
pricing
and analyzing equity derivatives 2-33
and computing yields for fixed-income securities 2-20
fixed-income securities 2-28
principal 5-24
prmat 5-251
profit, option 5-204
prtbill 5-253
purchase price 2-21
put and call pricing
binomial 5-30
Black-Scholes 5-43
pvfix 5-254
pvvar 5-255
pyld2zero 5-257

\section*{Q}
quasi coupon date
previous 5-109
quasi-coupon dates 2-20

\section*{R}
randomized portfolio risks, returns, and weights 5-230
rate of a security, discount 5-164
rate of return 2-16
after-tax 5-265
effective 5-165
internal 5-186
internal for nonperiodic cash flow 5-297
modified internal 5-196
nominal 5-200
portfolio expected 5-241
redemption value 2-21
reference date 2-27
referencing matrix elements 1-4, 1-6
remaining depreciable value \(2-18,5-158\)
ret2tick 5-261
return arguments, function 1-20

Index-10
rho 2-33
risk aversion 3-8
risk-free interest rates 4-24
risks
returns, and weights randomized portfolio 5-230
row, column notation 1-4
row-by-column 1-4

\section*{S}
scalar 1-4
adding or subtracting 1-8
multiplying a matrix by \(1-12\)
second 5-264
seconds of date or time 5-264
securities industry association 2-20
sensitivity
fixed-income 2-29
measures for derivatives 2-33
of a portfolio of options, plotting 4-23
of an option, plotting 4-21
of bond prices to changes in interest rates 4-3
of cash flow 2-18
to
interest rate change, Black-Scholes 5-45
to time-until-maturity change, Black-Scholes 5-47
to underlying delta change, Black-Scholes 5-38
to underlying price change, Black-Scholes 5-36
to underlying price volatility, Black-Scholes 5-49
visualizing to parallel shifts in the yield curve 4-8
settlement date 2-20
coupon period containing 5-118
days between previous coupon date and 5-115
days between, and coupon date 5-112
next coupon date after 5-98
SIA 2-20
compatibility 2-20
default parameter values 2-24
framework 2-23
order of precedence 2-27
use of nonlinear formulas 2-28
SIA conventions 2-20
single quotes 1-19
singular matrices 1-13
solving
sample problems with the toolbox 4-2
spreadsheets 1-4
square matrices 1-13
straight-line depreciation 2-18, 5-160
strings
and numbers in a matrix 1-20
date 2-4, 5-135
input, matrices of 1-19
stored as character array 1-19
subtracting
a scalar and a matrix 1-8
matrices 1-7
sum of years' digits depreciation 2-18, 5-159
swap 4-16
synch date 2-27
synchronization date 2-27
system of linear equations 1-13

\section*{T}
taxedrr 5-265
tbl2bond 5-266
term structure 2-2, 2-30, 4-3, 5-161, 5-180, 5-257, \(5-266,5-306,5-311,5-316,5-319,5-322\)
parameters from Treasury bond parameters 5-277
terminology, fixed-income securities 2-20
theta 2-34
thirdwednesday 5-268
thirtytwo2dec 5-270
three-dimensional graphics 4-12
tick labels 5-125
tick2ret 5-271
time
current 2-8, 5-201
hour of 5-185
minute of 5-195
seconds of 5-264
time factor 5-92
time2date 5-273
time-until-maturity change
Black-Scholes sensitivity to 5-47
today 5-276
tr2bonds 5-277
tracking error 3-20
tracking error efficient frontier 3-20
transposing matrices 1-6
Treasury bill 2-30
bond equivalent yield for 5-29
parameters to Treasury bond parameters 5-266
price of 5-253
yield of 5-305
Treasury bond 2-30
parameters
from Treasury bill parameters 5-266
to term-structure parameters 5-277

\section*{U}
ugarch 5-280
ugarchllf 5-282
ugarchpred 5-284
ugarchsim 5-287
uniform payment equal to varying cash flow 5-208

\section*{V}
variable names 1-7
vector 1-4
date 5-138
of dates 1-20
vectors
as arguments, limitations 1-21
computing dot products of 1-10
multiplying 1-9
multiplying matrices and 1-10
vega 2-34
visualizing the sensitivity of a bond portfolio's price to parallel shifts in the yield curve 4-8
volatility
Black-Scholes implied 5-39
implied 2-34

\section*{W}
week, day of 5-292
weekday
date of specific, in month 5-202
weekday 5-292
workday, date of future or past 5-140
working days between dates 5-294
wrkdydif 5-294

\section*{Index-12}

\section*{X}
x2mdate 5-295
xirr 5-297

\section*{Y}
year
fraction of between dates 5-301
number of days in 5-300
of date 5-299
year 5-299
yeardays 5-300
yearfrac 5-301
yield
curve 4-3, 4-6
visualizing sensitivity of bond portfolio's price to parallel shifts in 4-8
for Treasury bill, bond equivalent 5-29
functions for fixed-income securities 2-28
of discounted security 5-302
of security paying interest at maturity 5-303
of Treasury bill 5-305
yields
for fixed-income securities, pricing and computing 2-20
yield-to-maturity 2-21
ylddisc 5-302
yldmat 5-303
yldtbill 5-305

\section*{Z}
zbtprice 5-306
zbtyield 5-311
zero curve 5-277, 5-307, 5-312
from coupon bond prices 5-306
from coupon bond yields 5-311
from discount curve 5-161
from forward curve 5-180
from par yield curve 5-257
to discount curve 5-316
to forward curve 5-319
to par yield curve 5-322
zero2disc 5-316
zero2fwd 5-319
zero2pyld 5-322
zero-coupon bond 5-162, 5-307, 5-312```

[^0]: [Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5)

[^1]: Description
 [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the convexity of NUMBONDS fixed income securities given the yield to maturity for each bond. This function determines the convexity for a bond whether or not the first or last coupon periods in the coupon structure are short or long (i.e., whether or not the coupon structure is synchronized to maturity). This function also determines the convexity of a zero coupon bond.

 YearConvexity is the yearly (annualized) convexity; PerConvexity is the periodic convexity reported on a semiannual bond basis (in accordance with SIA convention). Both outputs are NUMBONDS-by-1 vectors.

[^2]: Description
 [ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the Macaulay and modified duration of NUMBONDS fixed income securities given yield to maturity for each bond. This function determines the duration for a bond whether or not the first or last coupon periods in the coupon structure are short or long (i.e., whether or not the coupon structure is synchronized to maturity). This function also determines the Macaulay and modified duration for a zero coupon bond.

 ModDuration is the modified duration in years; YearDuration is the Macaulay duration in years; PerDuration is the periodic Macaulay duration reported on a semiannual bond basis (in accordance with SIA convention). Outputs are NUMBONDS-by-1 vectors.

[^3]: Description [TFactors, F] = date2time(Settle, Dates, Compounding, Basis, EndMonthRule) computes time factors appropriate to compounded rate quotes beyond the settlement date.

